{"title":"关于第j次对称幂函数在若干正整数序列上的傅里叶系数的平均行为","authors":"Anubhav Sharma, A. Sankaranarayanan","doi":"10.21136/CMJ.2023.0348-22","DOIUrl":null,"url":null,"abstract":"We investigate the average behavior of the nth normalized Fourier coefficients of the jth (j ≽ 2 be any fixed integer) symmetric power L-function (i.e., L(s,symjf)), attached to a primitive holomorphic cusp form f of weight k for the full modular group SL(2,ℤ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$SL(2,\\mathbb{Z})$$\\end{document} over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum Sj∗:=∑a12+a22+a32+a42+a52+a62⩽x(a1,a2,a3,a4,a5,a6)∈ℤ6λsymjf2(a12+a22+a32+a42+a52+a62),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S_j^ *: = \\sum\\limits_{\\matrix{{a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x} \\cr {({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}) \\in {\\mathbb{Z}^6}} \\cr}} {\\lambda _{{\\rm{sy}}{{\\rm{m}}^j}f}^2(a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2),} $$\\end{document} where x is sufficiently large, and L(s,symjf):=∑n=1∞λsymjf(n)ns.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L(s,{\\rm{sy}}{{\\rm{m}}^j}f): = \\sum\\limits_{n = 1}^\\infty {{{{\\lambda _{{\\rm{sy}}{{\\rm{m}}^j}f}}(n)} \\over {{n^s}}}}.$$\\end{document} When j = 2, the error term which we obtain improves the earlier known result.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"885 - 901"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the average behavior of the Fourier coefficients of jth symmetric power L-function over certain sequences of positive integers\",\"authors\":\"Anubhav Sharma, A. Sankaranarayanan\",\"doi\":\"10.21136/CMJ.2023.0348-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the average behavior of the nth normalized Fourier coefficients of the jth (j ≽ 2 be any fixed integer) symmetric power L-function (i.e., L(s,symjf)), attached to a primitive holomorphic cusp form f of weight k for the full modular group SL(2,ℤ)\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$SL(2,\\\\mathbb{Z})$$\\\\end{document} over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum Sj∗:=∑a12+a22+a32+a42+a52+a62⩽x(a1,a2,a3,a4,a5,a6)∈ℤ6λsymjf2(a12+a22+a32+a42+a52+a62),\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$S_j^ *: = \\\\sum\\\\limits_{\\\\matrix{{a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x} \\\\cr {({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}) \\\\in {\\\\mathbb{Z}^6}} \\\\cr}} {\\\\lambda _{{\\\\rm{sy}}{{\\\\rm{m}}^j}f}^2(a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2),} $$\\\\end{document} where x is sufficiently large, and L(s,symjf):=∑n=1∞λsymjf(n)ns.\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$L(s,{\\\\rm{sy}}{{\\\\rm{m}}^j}f): = \\\\sum\\\\limits_{n = 1}^\\\\infty {{{{\\\\lambda _{{\\\\rm{sy}}{{\\\\rm{m}}^j}f}}(n)} \\\\over {{n^s}}}}.$$\\\\end{document} When j = 2, the error term which we obtain improves the earlier known result.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"885 - 901\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0348-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0348-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了全模群SL(2,ℤ)\documentclass[12pt]{minimal}\ usepackage{amsmath}\ use package{{wasysym}\usepackage{amsfonts}\ usepackage{amssymb}\ userpackage{amsbsy}\usepackage{mathrsfs}\ user package{upgek}\setlength{\doddsedmargin}{-69pt}\ begin{document}$$SL(2,\mathbb{Z})$$\end{document}在某些正整数序列上。确切地说,我们证明了一个渐近公式,其和Sj*的误差项为:=∑a12+a22+a32+a42+a52+a62⩽x(a1,a2,a3,a4,a5,a6)∈ℤ6λsymjf2(a12+a22+a32+a42+a52+a62),\documentclass[12pt]{minimum}\ usepackage{amsmath}\ use package{S wasysym}\ usapackage{amsfonts}\ userpackage{{amssymb}\ user package{amsbsy}\usepackage{mathrsfs}\use package{upgeek}\setlength{\doddsidemargin}{-69pt}\ begin{document}$S_j^*:=\sum\limits_{matrix{a_1^2+a_2^2+a_3^2+a_1^2+a_5^2+a_ 6^2 x}\cr{({a_2,{a\a2},{a_3},{a_2},}a_5},{a_6})\在{\mathbb{Z}^6}\cr}}中{{\rm{m}}^j}f}^2(a_1^2+a_2^2+a_3^2+a_1^2),}$\end{document}其中x足够大,L(s,symjf):=∑n=1∞λsymjf(n)ns。\documentclass[12pt]{minimal}\ usepackage{amsmath}\ use package{{wasysym}\usepackage{amsfonts}\ userpackage{amssymb}\ user package{hamsbsy}\usepackage{mathrsfs}\usepackage{upgek}\setlength{\doddsedmargin}{-69pt}\ begin{document}$L m}^j}f}}(n)}\在{{n^s}}$$\end{document}当j=2时,我们获得的误差项改进了先前已知的结果。
On the average behavior of the Fourier coefficients of jth symmetric power L-function over certain sequences of positive integers
We investigate the average behavior of the nth normalized Fourier coefficients of the jth (j ≽ 2 be any fixed integer) symmetric power L-function (i.e., L(s,symjf)), attached to a primitive holomorphic cusp form f of weight k for the full modular group SL(2,ℤ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{Z})$$\end{document} over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum Sj∗:=∑a12+a22+a32+a42+a52+a62⩽x(a1,a2,a3,a4,a5,a6)∈ℤ6λsymjf2(a12+a22+a32+a42+a52+a62),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_j^ *: = \sum\limits_{\matrix{{a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x} \cr {({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}) \in {\mathbb{Z}^6}} \cr}} {\lambda _{{\rm{sy}}{{\rm{m}}^j}f}^2(a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2),} $$\end{document} where x is sufficiently large, and L(s,symjf):=∑n=1∞λsymjf(n)ns.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s,{\rm{sy}}{{\rm{m}}^j}f): = \sum\limits_{n = 1}^\infty {{{{\lambda _{{\rm{sy}}{{\rm{m}}^j}f}}(n)} \over {{n^s}}}}.$$\end{document} When j = 2, the error term which we obtain improves the earlier known result.