Zheng Cao, Yuyuan Chen, Qianpeng Zhang, Yanping Xia, Gang Liu, Dun Wu, Wenzhong Ma, Junfeng Cheng, Chunlin Liu
{"title":"QCM自组装微凝胶的制备及其离子传感性能","authors":"Zheng Cao, Yuyuan Chen, Qianpeng Zhang, Yanping Xia, Gang Liu, Dun Wu, Wenzhong Ma, Junfeng Cheng, Chunlin Liu","doi":"10.2478/nanofab-2017-0002","DOIUrl":null,"url":null,"abstract":"Abstract The polyanion polystyrene sulfonate (PSS), the polycation poly (allylamine hydrochloride) (PAH), and the anionic poly (N-isopropylacrylamide-co-acrylic acid) [P(NIPAM-co-AA)] microgels were self-assembled onto the polyethylene imine (PEI) adsorbed gold surfaces of quartz crystal microbalance (QCM) because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM) was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"3 1","pages":"16 - 25"},"PeriodicalIF":3.3000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/nanofab-2017-0002","citationCount":"8","resultStr":"{\"title\":\"Preparation and ion sensing property of the self-assembled microgels by QCM\",\"authors\":\"Zheng Cao, Yuyuan Chen, Qianpeng Zhang, Yanping Xia, Gang Liu, Dun Wu, Wenzhong Ma, Junfeng Cheng, Chunlin Liu\",\"doi\":\"10.2478/nanofab-2017-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The polyanion polystyrene sulfonate (PSS), the polycation poly (allylamine hydrochloride) (PAH), and the anionic poly (N-isopropylacrylamide-co-acrylic acid) [P(NIPAM-co-AA)] microgels were self-assembled onto the polyethylene imine (PEI) adsorbed gold surfaces of quartz crystal microbalance (QCM) because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM) was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.\",\"PeriodicalId\":51992,\"journal\":{\"name\":\"Nanofabrication\",\"volume\":\"3 1\",\"pages\":\"16 - 25\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/nanofab-2017-0002\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanofabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/nanofab-2017-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/nanofab-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Preparation and ion sensing property of the self-assembled microgels by QCM
Abstract The polyanion polystyrene sulfonate (PSS), the polycation poly (allylamine hydrochloride) (PAH), and the anionic poly (N-isopropylacrylamide-co-acrylic acid) [P(NIPAM-co-AA)] microgels were self-assembled onto the polyethylene imine (PEI) adsorbed gold surfaces of quartz crystal microbalance (QCM) because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM) was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.