TS-GAN:基于传感器的健康数据增强的时间序列GAN

Zhenyu Yang, Yantao Li, Gang Zhou
{"title":"TS-GAN:基于传感器的健康数据增强的时间序列GAN","authors":"Zhenyu Yang, Yantao Li, Gang Zhou","doi":"10.1145/3583593","DOIUrl":null,"url":null,"abstract":"Deep learning has achieved significant success on intelligent medical treatments, such as automatic diagnosis and analysis of medical data. To train an automatic diagnosis system with high accuracy and strong robustness in healthcare, sufficient training data are required when using deep learning-based methods. However, given that the data collected by sensors that are embedded in medical or mobile devices are inadequate, it is challenging to train an effective and efficient classification model with state-of-the-art performance. Inspired by generative adversarial networks (GANs), we propose TS-GAN, a Time-series GAN architecture based on long short-term memory (LSTM) networks for sensor-based health data augmentation, thereby improving the performance of deep learning-based classification models. TS-GAN aims to learn a generative model that creates time-series data with the same space and time dependence as the real data. Specifically, we design an LSTM-based generator for creating realistic data and an LSTM-based discriminator for determining how similar the generated data are to real data. In particular, we design a sequential-squeeze-and-excitation module in the LSTM-based discriminator to better understand space dependence of real data, and apply the gradient penalty originated from Wasserstein GANs in the training process to stabilize the optimization. We conduct comparative experiments to evaluate the performance of TS-GAN with TimeGAN, C-RNN-GAN and Conditional Wasserstein GANs through discriminator loss, maximum mean discrepancy, visualization methods and classification accuracy on health datasets of ECG_200, NonInvasiveFatalECG_Thorax1, and mHealth, respectively. The experimental results show that TS-GAN exceeds other state-of-the-art time-series GANs in almost all the evaluation metrics, and the classifier trained on synthetic datasets generated by TS-GAN achieves the highest classification accuracy of 97.50% on ECG_200, 94.12% on NonInvasiveFatalECG_Thorax1, and 98.12% on mHealth, respectively.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"4 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"TS-GAN: Time-series GAN for Sensor-based Health Data Augmentation\",\"authors\":\"Zhenyu Yang, Yantao Li, Gang Zhou\",\"doi\":\"10.1145/3583593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has achieved significant success on intelligent medical treatments, such as automatic diagnosis and analysis of medical data. To train an automatic diagnosis system with high accuracy and strong robustness in healthcare, sufficient training data are required when using deep learning-based methods. However, given that the data collected by sensors that are embedded in medical or mobile devices are inadequate, it is challenging to train an effective and efficient classification model with state-of-the-art performance. Inspired by generative adversarial networks (GANs), we propose TS-GAN, a Time-series GAN architecture based on long short-term memory (LSTM) networks for sensor-based health data augmentation, thereby improving the performance of deep learning-based classification models. TS-GAN aims to learn a generative model that creates time-series data with the same space and time dependence as the real data. Specifically, we design an LSTM-based generator for creating realistic data and an LSTM-based discriminator for determining how similar the generated data are to real data. In particular, we design a sequential-squeeze-and-excitation module in the LSTM-based discriminator to better understand space dependence of real data, and apply the gradient penalty originated from Wasserstein GANs in the training process to stabilize the optimization. We conduct comparative experiments to evaluate the performance of TS-GAN with TimeGAN, C-RNN-GAN and Conditional Wasserstein GANs through discriminator loss, maximum mean discrepancy, visualization methods and classification accuracy on health datasets of ECG_200, NonInvasiveFatalECG_Thorax1, and mHealth, respectively. The experimental results show that TS-GAN exceeds other state-of-the-art time-series GANs in almost all the evaluation metrics, and the classifier trained on synthetic datasets generated by TS-GAN achieves the highest classification accuracy of 97.50% on ECG_200, 94.12% on NonInvasiveFatalECG_Thorax1, and 98.12% on mHealth, respectively.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"4 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

深度学习在智能医疗方面取得了显著的成功,如医疗数据的自动诊断和分析。在医疗保健领域,要训练出具有较高准确率和较强鲁棒性的自动诊断系统,在使用基于深度学习的方法时需要有足够的训练数据。然而,鉴于嵌入医疗或移动设备的传感器收集的数据不足,训练具有最先进性能的有效和高效分类模型是一项挑战。受生成对抗网络(GAN)的启发,我们提出了TS-GAN,一种基于长短期记忆(LSTM)网络的时间序列GAN架构,用于基于传感器的健康数据增强,从而提高了基于深度学习的分类模型的性能。TS-GAN旨在学习生成模型,生成与真实数据具有相同空间和时间依赖性的时间序列数据。具体来说,我们设计了一个基于lstm的生成器来创建真实数据,并设计了一个基于lstm的鉴别器来确定生成的数据与真实数据的相似程度。特别地,我们在基于lstm的鉴别器中设计了一个顺序挤压和激励模块,以更好地理解真实数据的空间依赖性,并在训练过程中应用源自Wasserstein gan的梯度惩罚来稳定优化。我们分别在ECG_200、NonInvasiveFatalECG_Thorax1和mHealth健康数据集上,通过判别器损失、最大平均差异、可视化方法和分类精度来比较TS-GAN与TimeGAN、C-RNN-GAN和条件Wasserstein gan的性能。实验结果表明,TS-GAN在几乎所有评价指标上都优于其他最先进的时间序列gan,在合成数据集上训练的分类器在ECG_200、NonInvasiveFatalECG_Thorax1和mHealth上分别达到97.50%、94.12%和98.12%的最高分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TS-GAN: Time-series GAN for Sensor-based Health Data Augmentation
Deep learning has achieved significant success on intelligent medical treatments, such as automatic diagnosis and analysis of medical data. To train an automatic diagnosis system with high accuracy and strong robustness in healthcare, sufficient training data are required when using deep learning-based methods. However, given that the data collected by sensors that are embedded in medical or mobile devices are inadequate, it is challenging to train an effective and efficient classification model with state-of-the-art performance. Inspired by generative adversarial networks (GANs), we propose TS-GAN, a Time-series GAN architecture based on long short-term memory (LSTM) networks for sensor-based health data augmentation, thereby improving the performance of deep learning-based classification models. TS-GAN aims to learn a generative model that creates time-series data with the same space and time dependence as the real data. Specifically, we design an LSTM-based generator for creating realistic data and an LSTM-based discriminator for determining how similar the generated data are to real data. In particular, we design a sequential-squeeze-and-excitation module in the LSTM-based discriminator to better understand space dependence of real data, and apply the gradient penalty originated from Wasserstein GANs in the training process to stabilize the optimization. We conduct comparative experiments to evaluate the performance of TS-GAN with TimeGAN, C-RNN-GAN and Conditional Wasserstein GANs through discriminator loss, maximum mean discrepancy, visualization methods and classification accuracy on health datasets of ECG_200, NonInvasiveFatalECG_Thorax1, and mHealth, respectively. The experimental results show that TS-GAN exceeds other state-of-the-art time-series GANs in almost all the evaluation metrics, and the classifier trained on synthetic datasets generated by TS-GAN achieves the highest classification accuracy of 97.50% on ECG_200, 94.12% on NonInvasiveFatalECG_Thorax1, and 98.12% on mHealth, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1