Alisa Yusupova , Nicos G. Pavlidis , Efthymios G. Pavlidis
{"title":"具有自适应折扣的动态线性模型","authors":"Alisa Yusupova , Nicos G. Pavlidis , Efthymios G. Pavlidis","doi":"10.1016/j.ijforecast.2022.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic linear models with discounting are state-space models that are sufficiently flexible, interpretable, and computationally efficient. As such they are increasingly applied in economics and finance. Successful modelling and forecasting with such models depends on an appropriate choice of the discount factor. In this work we develop an adaptive approach to sequentially estimate this parameter, which relies on the minimisation of the one-step-ahead forecast error. Simulated data and an in-depth empirical application to the problem of forecasting quarterly UK house prices show that our approach can significantly improve forecast accuracy at a computational cost that is orders of magnitude smaller than approaches based on sequential Monte Carlo. We also conduct an extensive evaluation of diverse forecast combination methods for the task of predicting UK house prices. Our results indicate that a recent density combination method can substantially improve forecast accuracy.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic linear models with adaptive discounting\",\"authors\":\"Alisa Yusupova , Nicos G. Pavlidis , Efthymios G. Pavlidis\",\"doi\":\"10.1016/j.ijforecast.2022.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic linear models with discounting are state-space models that are sufficiently flexible, interpretable, and computationally efficient. As such they are increasingly applied in economics and finance. Successful modelling and forecasting with such models depends on an appropriate choice of the discount factor. In this work we develop an adaptive approach to sequentially estimate this parameter, which relies on the minimisation of the one-step-ahead forecast error. Simulated data and an in-depth empirical application to the problem of forecasting quarterly UK house prices show that our approach can significantly improve forecast accuracy at a computational cost that is orders of magnitude smaller than approaches based on sequential Monte Carlo. We also conduct an extensive evaluation of diverse forecast combination methods for the task of predicting UK house prices. Our results indicate that a recent density combination method can substantially improve forecast accuracy.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207022001376\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001376","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Dynamic linear models with discounting are state-space models that are sufficiently flexible, interpretable, and computationally efficient. As such they are increasingly applied in economics and finance. Successful modelling and forecasting with such models depends on an appropriate choice of the discount factor. In this work we develop an adaptive approach to sequentially estimate this parameter, which relies on the minimisation of the one-step-ahead forecast error. Simulated data and an in-depth empirical application to the problem of forecasting quarterly UK house prices show that our approach can significantly improve forecast accuracy at a computational cost that is orders of magnitude smaller than approaches based on sequential Monte Carlo. We also conduct an extensive evaluation of diverse forecast combination methods for the task of predicting UK house prices. Our results indicate that a recent density combination method can substantially improve forecast accuracy.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.