基于IGLS方法的MIMO二维ARMAX模型参数估计

Q4 Engineering Control and Cybernetics Pub Date : 2021-09-01 DOI:10.2478/candc-2021-0020
Zohreh Hayati, M. Shafieirad, I. Zamani, Amir Hossein, A. Mehra, Zohreh Abbasi
{"title":"基于IGLS方法的MIMO二维ARMAX模型参数估计","authors":"Zohreh Hayati, M. Shafieirad, I. Zamani, Amir Hossein, A. Mehra, Zohreh Abbasi","doi":"10.2478/candc-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an iterative method for the unbiased identification of linear Multiple-Input Multiple-Output (MIMO) discrete two-dimensional (2D) systems. The system discussed here has Auto-Regressive Moving-Average model with exogenous inputs (ARMAX model). The proposed algorithm functions on the basis of the traditional Iterative Generalized Least Squares (IGLS) method. In summary, this paper proposes a two-dimensional Multiple-Input Multiple-Output Iterative Generalized Least Squares (2DMIGLS) algorithm to estimate the unknown parameters of the ARMAX model. Finally, simulation results show the efficiency and accuracy of the presented algorithm in estimating the unknown parameters of the model in the presence of colored noise.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"303 - 322"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation of MIMO two-dimensional ARMAX model based on IGLS method\",\"authors\":\"Zohreh Hayati, M. Shafieirad, I. Zamani, Amir Hossein, A. Mehra, Zohreh Abbasi\",\"doi\":\"10.2478/candc-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents an iterative method for the unbiased identification of linear Multiple-Input Multiple-Output (MIMO) discrete two-dimensional (2D) systems. The system discussed here has Auto-Regressive Moving-Average model with exogenous inputs (ARMAX model). The proposed algorithm functions on the basis of the traditional Iterative Generalized Least Squares (IGLS) method. In summary, this paper proposes a two-dimensional Multiple-Input Multiple-Output Iterative Generalized Least Squares (2DMIGLS) algorithm to estimate the unknown parameters of the ARMAX model. Finally, simulation results show the efficiency and accuracy of the presented algorithm in estimating the unknown parameters of the model in the presence of colored noise.\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"303 - 322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2021-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种用于线性多输入多输出离散二维系统无偏辨识的迭代方法。本文讨论的系统具有具有外生输入的自回归移动平均模型(ARMAX模型)。该算法是在传统的迭代广义最小二乘法的基础上提出的。总之,本文提出了一种二维多输入多输出迭代广义最小二乘(2DMIGLS)算法来估计ARMAX模型的未知参数。最后,仿真结果表明,在存在有色噪声的情况下,该算法在估计模型未知参数方面具有高效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter estimation of MIMO two-dimensional ARMAX model based on IGLS method
Abstract This paper presents an iterative method for the unbiased identification of linear Multiple-Input Multiple-Output (MIMO) discrete two-dimensional (2D) systems. The system discussed here has Auto-Regressive Moving-Average model with exogenous inputs (ARMAX model). The proposed algorithm functions on the basis of the traditional Iterative Generalized Least Squares (IGLS) method. In summary, this paper proposes a two-dimensional Multiple-Input Multiple-Output Iterative Generalized Least Squares (2DMIGLS) algorithm to estimate the unknown parameters of the ARMAX model. Finally, simulation results show the efficiency and accuracy of the presented algorithm in estimating the unknown parameters of the model in the presence of colored noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
期刊最新文献
Readiness of Low Complexity ERP for Continuous Auditing in SMEs: The Brazilian Case Study Characterizations and Classification of Paraconvex Multimaps Necessary Optimality Conditions for Robust Nonsmooth Multiobjective Optimization Problems Clustering of Data Represented by Pairwise Comparisons Necessary and Sufficient Conditions for Constant Prices in a Sraffa’s Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1