广义岭回归中岭参数选择的广义交叉验证准则最小化问题的显式解

IF 0.5 4区 数学 Q3 MATHEMATICS Hiroshima Mathematical Journal Pub Date : 2018-07-01 DOI:10.32917/HMJ/1533088835
H. Yanagihara
{"title":"广义岭回归中岭参数选择的广义交叉验证准则最小化问题的显式解","authors":"H. Yanagihara","doi":"10.32917/HMJ/1533088835","DOIUrl":null,"url":null,"abstract":"This paper considers optimization of the ridge parameters in generalized ridge regression (GRR) by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR) in that a solution to the minimization problem for one model selection criterion, i.e., Mallows’ Cp criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria, e.g., Cp criterion, cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be obtained explicitly with RR. On the other hand, Cp criterion is at a disadvantage compared to CV and GCV criteria because a good estimate of the error variance is required in order for Cp criterion to work well. In this paper, we show that ridge parameters optimized by minimizing GCV criterion can also be obtained by closed forms in GRR. We can overcome one disadvantage of GRR by using GCV criterion for the optimization of ridge parameters. (Last Modified: May 17, 2013)","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.32917/HMJ/1533088835","citationCount":"6","resultStr":"{\"title\":\"Explicit solution to the minimization problem of generalized cross-validation criterion for selecting ridge parameters in generalized ridge regression\",\"authors\":\"H. Yanagihara\",\"doi\":\"10.32917/HMJ/1533088835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers optimization of the ridge parameters in generalized ridge regression (GRR) by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR) in that a solution to the minimization problem for one model selection criterion, i.e., Mallows’ Cp criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria, e.g., Cp criterion, cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be obtained explicitly with RR. On the other hand, Cp criterion is at a disadvantage compared to CV and GCV criteria because a good estimate of the error variance is required in order for Cp criterion to work well. In this paper, we show that ridge parameters optimized by minimizing GCV criterion can also be obtained by closed forms in GRR. We can overcome one disadvantage of GRR by using GCV criterion for the optimization of ridge parameters. (Last Modified: May 17, 2013)\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.32917/HMJ/1533088835\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1533088835\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1533088835","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

通过最小化模型选择准则,研究了广义脊回归中脊参数的优化问题。GRR与岭回归(RR)相比有一个主要的优势,即GRR可以显式地得到一个模型选择标准(即Mallows的Cp标准)的最小化问题的解,但对于任何模型选择标准(例如Cp标准、交叉验证(CV)标准或广义CV (GCV)标准)的最小化问题的解,不能用RR显式地得到。另一方面,与CV和GCV标准相比,Cp标准处于劣势,因为要使Cp标准发挥良好的作用,需要对误差方差进行良好的估计。在本文中,我们证明了通过最小化GCV准则优化的山脊参数也可以在GRR中通过封闭形式得到。采用GCV准则对脊参数进行优化,可以克服GRR的一个缺点。(最后修改日期:2013年5月17日)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explicit solution to the minimization problem of generalized cross-validation criterion for selecting ridge parameters in generalized ridge regression
This paper considers optimization of the ridge parameters in generalized ridge regression (GRR) by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR) in that a solution to the minimization problem for one model selection criterion, i.e., Mallows’ Cp criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria, e.g., Cp criterion, cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be obtained explicitly with RR. On the other hand, Cp criterion is at a disadvantage compared to CV and GCV criteria because a good estimate of the error variance is required in order for Cp criterion to work well. In this paper, we show that ridge parameters optimized by minimizing GCV criterion can also be obtained by closed forms in GRR. We can overcome one disadvantage of GRR by using GCV criterion for the optimization of ridge parameters. (Last Modified: May 17, 2013)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
期刊最新文献
Hartogs’ analyticity theorem for C2-mappings and maximum principle for q-convex functions On a class of fully nonlinear elliptic equations containing gradient terms on compact almost Hermitian manifolds An ℓ2,0-norm constrained matrix optimization via extended discrete first-order algorithms Generalized solution of the double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces On meromorphic functions sharing three one-point or two-point sets CM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1