双源太阳跟踪器的模糊逻辑合并及PID性能分析

M. Hasan, Yuwaldi Away, S. Suriadi, Andri Novandri
{"title":"双源太阳跟踪器的模糊逻辑合并及PID性能分析","authors":"M. Hasan, Yuwaldi Away, S. Suriadi, Andri Novandri","doi":"10.17529/jre.v19i1.15128","DOIUrl":null,"url":null,"abstract":"—Utilization of renewable energy from solar panel systems is increasingly being applied, but until now its utilization has not been maximized. The movement of the sun caused by rotation of the earth and cloudy condition should be taken into account to maximize the electrical energy in solar panels. In this study, a concept to calculate the movement of a two-axis sun tracker is proposed by using a combination of two controller methods, i.e. Proportional Integral Derivative (PID) and Fuzzy logic known as Fuzzy-PID (F-PID). To follow the movement of the sun, the LDR sensor is used as an input to light as well as output used to drive 2 units servo for x-axis and y-axis. Sun tracker that is used is based on tetrahedron geometry and uses three Light Dependent Resistor (LDR) sensors as input. Input and output components are connected to the Atmega 328P by using a combination of Fuzzy logic and PID programs (F-PID). Fuzzy logic programming is first performed on the Matlab application using Fuzzy Inference System (FIS), then converted into an Arduino-based programming language. The sun tracker movement and the voltage received by the solar panel will be stored into the SD card using a data logging module. Adjusting the sun tracker movement using the combined Fuzzy logic and PID method intends to maximize the electrical energy received by the solar panel. The results showed that the F-PID method obtained the maximum voltage of 5.3 V, a maximum current of 0.11 A, and a maximum power of 0.61 W.","PeriodicalId":30766,"journal":{"name":"Jurnal Rekayasa Elektrika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Kinerja Penggabungan Logika Fuzzy dan PID pada Penjejak Matahari Dua Sumbu\",\"authors\":\"M. Hasan, Yuwaldi Away, S. Suriadi, Andri Novandri\",\"doi\":\"10.17529/jre.v19i1.15128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Utilization of renewable energy from solar panel systems is increasingly being applied, but until now its utilization has not been maximized. The movement of the sun caused by rotation of the earth and cloudy condition should be taken into account to maximize the electrical energy in solar panels. In this study, a concept to calculate the movement of a two-axis sun tracker is proposed by using a combination of two controller methods, i.e. Proportional Integral Derivative (PID) and Fuzzy logic known as Fuzzy-PID (F-PID). To follow the movement of the sun, the LDR sensor is used as an input to light as well as output used to drive 2 units servo for x-axis and y-axis. Sun tracker that is used is based on tetrahedron geometry and uses three Light Dependent Resistor (LDR) sensors as input. Input and output components are connected to the Atmega 328P by using a combination of Fuzzy logic and PID programs (F-PID). Fuzzy logic programming is first performed on the Matlab application using Fuzzy Inference System (FIS), then converted into an Arduino-based programming language. The sun tracker movement and the voltage received by the solar panel will be stored into the SD card using a data logging module. Adjusting the sun tracker movement using the combined Fuzzy logic and PID method intends to maximize the electrical energy received by the solar panel. The results showed that the F-PID method obtained the maximum voltage of 5.3 V, a maximum current of 0.11 A, and a maximum power of 0.61 W.\",\"PeriodicalId\":30766,\"journal\":{\"name\":\"Jurnal Rekayasa Elektrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Rekayasa Elektrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17529/jre.v19i1.15128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Elektrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17529/jre.v19i1.15128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

--太阳能电池板系统可再生能源的利用越来越多地得到应用,但到目前为止,其利用率还没有最大化。应考虑到地球自转和多云条件引起的太阳运动,以最大限度地利用太阳能电池板中的电能。在本研究中,结合比例积分微分(PID)和模糊逻辑(F-PID)两种控制器方法,提出了一种计算双轴太阳跟踪器运动的概念。为了跟踪太阳的运动,LDR传感器被用作光的输入以及用于驱动x轴和y轴的2个单元伺服的输出。所使用的太阳跟踪器基于四面体几何结构,并使用三个光相关电阻器(LDR)传感器作为输入。输入和输出部件通过使用模糊逻辑和PID程序(F-PID)的组合连接到Atmega 328P。模糊逻辑编程首先使用模糊推理系统(FIS)在Matlab应用程序上执行,然后转换为基于Arduino的编程语言。太阳跟踪器的移动和太阳能电池板接收到的电压将使用数据记录模块存储到SD卡中。使用模糊逻辑和PID组合方法调整太阳跟踪器的运动旨在最大化太阳能电池板接收的电能。结果表明,F-PID方法获得的最大电压为5.3V,最大电流为0.11A,最大功率为0.61W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Kinerja Penggabungan Logika Fuzzy dan PID pada Penjejak Matahari Dua Sumbu
—Utilization of renewable energy from solar panel systems is increasingly being applied, but until now its utilization has not been maximized. The movement of the sun caused by rotation of the earth and cloudy condition should be taken into account to maximize the electrical energy in solar panels. In this study, a concept to calculate the movement of a two-axis sun tracker is proposed by using a combination of two controller methods, i.e. Proportional Integral Derivative (PID) and Fuzzy logic known as Fuzzy-PID (F-PID). To follow the movement of the sun, the LDR sensor is used as an input to light as well as output used to drive 2 units servo for x-axis and y-axis. Sun tracker that is used is based on tetrahedron geometry and uses three Light Dependent Resistor (LDR) sensors as input. Input and output components are connected to the Atmega 328P by using a combination of Fuzzy logic and PID programs (F-PID). Fuzzy logic programming is first performed on the Matlab application using Fuzzy Inference System (FIS), then converted into an Arduino-based programming language. The sun tracker movement and the voltage received by the solar panel will be stored into the SD card using a data logging module. Adjusting the sun tracker movement using the combined Fuzzy logic and PID method intends to maximize the electrical energy received by the solar panel. The results showed that the F-PID method obtained the maximum voltage of 5.3 V, a maximum current of 0.11 A, and a maximum power of 0.61 W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Impact of Segmentation and Popularity-based Cache Replacement Policies on Named Data Networking Real-Time Detection of Power Quality Disturbance Using Fast Fourier Transform and Adaptive Neuro-Fuzzy Inference System Wireless Photoplethysmography (PPG) Measurement with Pulse Wave Velocity (PWV) Method for Arterial Stiffness Evaluation Augmentation of Additional Arabic Dataset for Jawi Writing and Classification Using Deep Learning Anomaly Detection for Security in Children's Play Areas Based on Image Using Multiple Lines Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1