{"title":"企业失败预测模型的文献综述","authors":"Stewart Jones","doi":"10.1108/jal-08-2022-0086","DOIUrl":null,"url":null,"abstract":"PurposeThis study updates the literature review of Jones (1987) published in this journal. The study pays particular attention to two important themes that have shaped the field over the past 35 years: (1) the development of a range of innovative new statistical learning methods, particularly advanced machine learning methods such as stochastic gradient boosting, adaptive boosting, random forests and deep learning, and (2) the emergence of a wide variety of bankruptcy predictor variables extending beyond traditional financial ratios, including market-based variables, earnings management proxies, auditor going concern opinions (GCOs) and corporate governance attributes. Several directions for future research are discussed.Design/methodology/approachThis study provides a systematic review of the corporate failure literature over the past 35 years with a particular focus on the emergence of new statistical learning methodologies and predictor variables. This synthesis of the literature evaluates the strength and limitations of different modelling approaches under different circumstances and provides an overall evaluation the relative contribution of alternative predictor variables. The study aims to provide a transparent, reproducible and interpretable review of the literature. The literature review also takes a theme-centric rather than author-centric approach and focuses on structured themes that have dominated the literature since 1987.FindingsThere are several major findings of this study. First, advanced machine learning methods appear to have the most promise for future firm failure research. Not only do these methods predict significantly better than conventional models, but they also possess many appealing statistical properties. Second, there are now a much wider range of variables being used to model and predict firm failure. However, the literature needs to be interpreted with some caution given the many mixed findings. Finally, there are still a number of unresolved methodological issues arising from the Jones (1987) study that still requiring research attention.Originality/valueThe study explains the connections and derivations between a wide range of firm failure models, from simpler linear models to advanced machine learning methods such as gradient boosting, random forests, adaptive boosting and deep learning. The paper highlights the most promising models for future research, particularly in terms of their predictive power, underlying statistical properties and issues of practical implementation. The study also draws together an extensive literature on alternative predictor variables and provides insights into the role and behaviour of alternative predictor variables in firm failure research.","PeriodicalId":45666,"journal":{"name":"Journal of Accounting Literature","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A literature survey of corporate failure prediction models\",\"authors\":\"Stewart Jones\",\"doi\":\"10.1108/jal-08-2022-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study updates the literature review of Jones (1987) published in this journal. The study pays particular attention to two important themes that have shaped the field over the past 35 years: (1) the development of a range of innovative new statistical learning methods, particularly advanced machine learning methods such as stochastic gradient boosting, adaptive boosting, random forests and deep learning, and (2) the emergence of a wide variety of bankruptcy predictor variables extending beyond traditional financial ratios, including market-based variables, earnings management proxies, auditor going concern opinions (GCOs) and corporate governance attributes. Several directions for future research are discussed.Design/methodology/approachThis study provides a systematic review of the corporate failure literature over the past 35 years with a particular focus on the emergence of new statistical learning methodologies and predictor variables. This synthesis of the literature evaluates the strength and limitations of different modelling approaches under different circumstances and provides an overall evaluation the relative contribution of alternative predictor variables. The study aims to provide a transparent, reproducible and interpretable review of the literature. The literature review also takes a theme-centric rather than author-centric approach and focuses on structured themes that have dominated the literature since 1987.FindingsThere are several major findings of this study. First, advanced machine learning methods appear to have the most promise for future firm failure research. Not only do these methods predict significantly better than conventional models, but they also possess many appealing statistical properties. Second, there are now a much wider range of variables being used to model and predict firm failure. However, the literature needs to be interpreted with some caution given the many mixed findings. Finally, there are still a number of unresolved methodological issues arising from the Jones (1987) study that still requiring research attention.Originality/valueThe study explains the connections and derivations between a wide range of firm failure models, from simpler linear models to advanced machine learning methods such as gradient boosting, random forests, adaptive boosting and deep learning. The paper highlights the most promising models for future research, particularly in terms of their predictive power, underlying statistical properties and issues of practical implementation. The study also draws together an extensive literature on alternative predictor variables and provides insights into the role and behaviour of alternative predictor variables in firm failure research.\",\"PeriodicalId\":45666,\"journal\":{\"name\":\"Journal of Accounting Literature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Accounting Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jal-08-2022-0086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Accounting Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jal-08-2022-0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
A literature survey of corporate failure prediction models
PurposeThis study updates the literature review of Jones (1987) published in this journal. The study pays particular attention to two important themes that have shaped the field over the past 35 years: (1) the development of a range of innovative new statistical learning methods, particularly advanced machine learning methods such as stochastic gradient boosting, adaptive boosting, random forests and deep learning, and (2) the emergence of a wide variety of bankruptcy predictor variables extending beyond traditional financial ratios, including market-based variables, earnings management proxies, auditor going concern opinions (GCOs) and corporate governance attributes. Several directions for future research are discussed.Design/methodology/approachThis study provides a systematic review of the corporate failure literature over the past 35 years with a particular focus on the emergence of new statistical learning methodologies and predictor variables. This synthesis of the literature evaluates the strength and limitations of different modelling approaches under different circumstances and provides an overall evaluation the relative contribution of alternative predictor variables. The study aims to provide a transparent, reproducible and interpretable review of the literature. The literature review also takes a theme-centric rather than author-centric approach and focuses on structured themes that have dominated the literature since 1987.FindingsThere are several major findings of this study. First, advanced machine learning methods appear to have the most promise for future firm failure research. Not only do these methods predict significantly better than conventional models, but they also possess many appealing statistical properties. Second, there are now a much wider range of variables being used to model and predict firm failure. However, the literature needs to be interpreted with some caution given the many mixed findings. Finally, there are still a number of unresolved methodological issues arising from the Jones (1987) study that still requiring research attention.Originality/valueThe study explains the connections and derivations between a wide range of firm failure models, from simpler linear models to advanced machine learning methods such as gradient boosting, random forests, adaptive boosting and deep learning. The paper highlights the most promising models for future research, particularly in terms of their predictive power, underlying statistical properties and issues of practical implementation. The study also draws together an extensive literature on alternative predictor variables and provides insights into the role and behaviour of alternative predictor variables in firm failure research.
期刊介绍:
The objective of the Journal is to publish papers that make a fundamental and substantial contribution to the understanding of accounting phenomena. To this end, the Journal intends to publish papers that (1) synthesize an area of research in a concise and rigorous manner to assist academics and others to gain knowledge and appreciation of diverse research areas or (2) present high quality, multi-method, original research on a broad range of topics relevant to accounting, auditing and taxation. Topical coverage is broad and inclusive covering virtually all aspects of accounting. Consistent with the historical mission of the Journal, it is expected that the lead article of each issue will be a synthesis article on an important research topic. Other manuscripts to be included in a given issue will be a mix of synthesis and original research papers. In addition to traditional research topics and methods, we actively solicit manuscripts of the including, but not limited to, the following: • meta-analyses • field studies • critiques of papers published in other journals • emerging developments in accounting theory • commentaries on current issues • innovative experimental research with strong grounding in cognitive, social or anthropological sciences • creative archival analyses using non-standard methodologies or data sources with strong grounding in various social sciences • book reviews • "idea" papers that don''t fit into other established categories.