Agustín José Mazzeo, Lina María Sepúlveda Cano, Luisa Fernanda Villa Montoya, Ricardo Alonso Gallego Burgos
{"title":"电力消费预测模型的系统文献综述","authors":"Agustín José Mazzeo, Lina María Sepúlveda Cano, Luisa Fernanda Villa Montoya, Ricardo Alonso Gallego Burgos","doi":"10.22395/rium.v19n36a6","DOIUrl":null,"url":null,"abstract":"El creciente consumo de energía eléctrica, los cambios climáticos y el desarrollo de nuevas tecnologías exigen mejoras para la gestión eficiente de la energía. El adecuado pronóstico del consumo de energía es relevante para el desarrollo sostenible de cualquier país. En este artículo se propone una revisión sistemática de literatura seleccionada a partir de cadenas de búsqueda formada por las palabras forecasting, energyy consumptionaplicadas en las bases de datos científicas. Se comparan principalmente los modelos/técnicas utilizadas, las variables consideradas y las métricas de error usadas con el fin de obtener conocimiento de cada una de las propuestas, relevar sus características y así poder evidenciar el vacío en la literatura que podría determinar la semilla para un nuevo trabajo de investigación. Como conclusiones se observan el uso continuo de redes neuronales artificiales para el pronóstico de consumo, la importancia determinar las variables de entrada y la medición del error para evaluar la precisión de los modelos. Finalmente, como nueva línea de investigación se propone desarrollar un modelo para el pronóstico de corto plazo de CEE para un país latinoamericano en vías de desarrollo, a partir de la comparación y evaluación de diferentes técnicas/modelos, variables y herramientas ya existentes.","PeriodicalId":31131,"journal":{"name":"Revista Ingenierias Universidad de Medellin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisión sistemática de literatura sobre modelos de pronósticos de consumo de energía eléctrica\",\"authors\":\"Agustín José Mazzeo, Lina María Sepúlveda Cano, Luisa Fernanda Villa Montoya, Ricardo Alonso Gallego Burgos\",\"doi\":\"10.22395/rium.v19n36a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El creciente consumo de energía eléctrica, los cambios climáticos y el desarrollo de nuevas tecnologías exigen mejoras para la gestión eficiente de la energía. El adecuado pronóstico del consumo de energía es relevante para el desarrollo sostenible de cualquier país. En este artículo se propone una revisión sistemática de literatura seleccionada a partir de cadenas de búsqueda formada por las palabras forecasting, energyy consumptionaplicadas en las bases de datos científicas. Se comparan principalmente los modelos/técnicas utilizadas, las variables consideradas y las métricas de error usadas con el fin de obtener conocimiento de cada una de las propuestas, relevar sus características y así poder evidenciar el vacío en la literatura que podría determinar la semilla para un nuevo trabajo de investigación. Como conclusiones se observan el uso continuo de redes neuronales artificiales para el pronóstico de consumo, la importancia determinar las variables de entrada y la medición del error para evaluar la precisión de los modelos. Finalmente, como nueva línea de investigación se propone desarrollar un modelo para el pronóstico de corto plazo de CEE para un país latinoamericano en vías de desarrollo, a partir de la comparación y evaluación de diferentes técnicas/modelos, variables y herramientas ya existentes.\",\"PeriodicalId\":31131,\"journal\":{\"name\":\"Revista Ingenierias Universidad de Medellin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenierias Universidad de Medellin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22395/rium.v19n36a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenierias Universidad de Medellin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22395/rium.v19n36a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisión sistemática de literatura sobre modelos de pronósticos de consumo de energía eléctrica
El creciente consumo de energía eléctrica, los cambios climáticos y el desarrollo de nuevas tecnologías exigen mejoras para la gestión eficiente de la energía. El adecuado pronóstico del consumo de energía es relevante para el desarrollo sostenible de cualquier país. En este artículo se propone una revisión sistemática de literatura seleccionada a partir de cadenas de búsqueda formada por las palabras forecasting, energyy consumptionaplicadas en las bases de datos científicas. Se comparan principalmente los modelos/técnicas utilizadas, las variables consideradas y las métricas de error usadas con el fin de obtener conocimiento de cada una de las propuestas, relevar sus características y así poder evidenciar el vacío en la literatura que podría determinar la semilla para un nuevo trabajo de investigación. Como conclusiones se observan el uso continuo de redes neuronales artificiales para el pronóstico de consumo, la importancia determinar las variables de entrada y la medición del error para evaluar la precisión de los modelos. Finalmente, como nueva línea de investigación se propone desarrollar un modelo para el pronóstico de corto plazo de CEE para un país latinoamericano en vías de desarrollo, a partir de la comparación y evaluación de diferentes técnicas/modelos, variables y herramientas ya existentes.