{"title":"发酵前酸化苹果汁对苹果蒸馏液中氨基甲酸乙酯及挥发性成分的影响","authors":"Zhicong Su, Yingying Han, Jinhua Du","doi":"10.15586/ijfs.v35i2.2304","DOIUrl":null,"url":null,"abstract":"In order to eliminate ethyl carbamate (EC) content in apple distillate, Fuji apple juice was acidified to pH 3.0 by sulfuric acid (ST), malic acid (MT), lactic acid (LT), or citric acid (CT). The acidified juice was inoculated with yeast, fermented at room temperature, and distilled by double distillation. Acid treatment by ST (3.23 μg/L), MT (3.20 μg/L), LT (2.93 μg/L), and CT (3.57 μg/L) significantly eliminated EC from apple distillate. Combined with the EC content and sensory evaluation, it was suggested that the high-quality apple distillate could be obtained with lower EC if apple juice was treated with ST or MT before fermentation.","PeriodicalId":14670,"journal":{"name":"Italian Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of acidified apple juice before fermentation on ethyl carbamate and volatile components of apple distillate\",\"authors\":\"Zhicong Su, Yingying Han, Jinhua Du\",\"doi\":\"10.15586/ijfs.v35i2.2304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to eliminate ethyl carbamate (EC) content in apple distillate, Fuji apple juice was acidified to pH 3.0 by sulfuric acid (ST), malic acid (MT), lactic acid (LT), or citric acid (CT). The acidified juice was inoculated with yeast, fermented at room temperature, and distilled by double distillation. Acid treatment by ST (3.23 μg/L), MT (3.20 μg/L), LT (2.93 μg/L), and CT (3.57 μg/L) significantly eliminated EC from apple distillate. Combined with the EC content and sensory evaluation, it was suggested that the high-quality apple distillate could be obtained with lower EC if apple juice was treated with ST or MT before fermentation.\",\"PeriodicalId\":14670,\"journal\":{\"name\":\"Italian Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/ijfs.v35i2.2304\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/ijfs.v35i2.2304","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effects of acidified apple juice before fermentation on ethyl carbamate and volatile components of apple distillate
In order to eliminate ethyl carbamate (EC) content in apple distillate, Fuji apple juice was acidified to pH 3.0 by sulfuric acid (ST), malic acid (MT), lactic acid (LT), or citric acid (CT). The acidified juice was inoculated with yeast, fermented at room temperature, and distilled by double distillation. Acid treatment by ST (3.23 μg/L), MT (3.20 μg/L), LT (2.93 μg/L), and CT (3.57 μg/L) significantly eliminated EC from apple distillate. Combined with the EC content and sensory evaluation, it was suggested that the high-quality apple distillate could be obtained with lower EC if apple juice was treated with ST or MT before fermentation.
期刊介绍:
"Italian Journal of Food Science" is an international journal publishing original, basic and applied papers, reviews, short communications, surveys and opinions on food science and technology with specific reference to the Mediterranean Region. Its expanded scope includes food production, food engineering, food management, food quality, shelf-life, consumer acceptance of foodstuffs, food safety and nutrition, energy and environmental aspects of food processing on the whole life cycle.
Reviews and surveys on specific topics relevant to the advance of the Mediterranean food industry are particularly welcome.