基于前馈径向基函数网络的动态抓取参数估计

Jianqiang Wang, Kaiqi Huang, Jianhua Su
{"title":"基于前馈径向基函数网络的动态抓取参数估计","authors":"Jianqiang Wang, Kaiqi Huang, Jianhua Su","doi":"10.3724/sp.j.1249.2022.03334","DOIUrl":null,"url":null,"abstract":"WANG Jianqiang, HUANG Kaiqi, and SU Jianhua 1) School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China 2) The State Key Laboratory for Management and Control of Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China Abstract: In this paper, we propose a motion estimation method based on a feed-forward radial basis network for grasping arbitrary moving objects. We first employ a kernel correlation filtering (KCF) algorithm to track the target position in real-time and establish the motion model of the target. Using the feed-forward radial base network, we then adjust the sampling time of the Kalman filter (KF) to predict the motion parameters of the target. Since that, we can reduce the computing time and improve the accuracy of the estimation of the motion parameters. Compared with the feed-forward perceptron network, the proposed method shortens the required time for grasping by 20%, which can avoid a failure grasp due to the arbitrary movement of the object in grasping.","PeriodicalId":35396,"journal":{"name":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic grasping parameter estimation based on feedforward radial basis function network\",\"authors\":\"Jianqiang Wang, Kaiqi Huang, Jianhua Su\",\"doi\":\"10.3724/sp.j.1249.2022.03334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WANG Jianqiang, HUANG Kaiqi, and SU Jianhua 1) School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China 2) The State Key Laboratory for Management and Control of Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China Abstract: In this paper, we propose a motion estimation method based on a feed-forward radial basis network for grasping arbitrary moving objects. We first employ a kernel correlation filtering (KCF) algorithm to track the target position in real-time and establish the motion model of the target. Using the feed-forward radial base network, we then adjust the sampling time of the Kalman filter (KF) to predict the motion parameters of the target. Since that, we can reduce the computing time and improve the accuracy of the estimation of the motion parameters. Compared with the feed-forward perceptron network, the proposed method shortens the required time for grasping by 20%, which can avoid a failure grasp due to the arbitrary movement of the object in grasping.\",\"PeriodicalId\":35396,\"journal\":{\"name\":\"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1249.2022.03334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/sp.j.1249.2022.03334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

王建强、黄凯琪、苏建华1)江西科技大学电气工程与自动化学院,江西省赣州341000;2)中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190摘要:,我们提出了一种基于前馈径向基网络的运动估计方法,用于抓取任意运动对象。我们首先采用核相关滤波(KCF)算法来实时跟踪目标位置,并建立目标的运动模型。使用前馈径向基网络,然后调整卡尔曼滤波器(KF)的采样时间来预测目标的运动参数。因此,我们可以减少计算时间,提高运动参数估计的准确性。与前馈感知器网络相比,该方法将抓取所需的时间缩短了20%,可以避免由于抓取过程中物体的任意运动而导致抓取失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic grasping parameter estimation based on feedforward radial basis function network
WANG Jianqiang, HUANG Kaiqi, and SU Jianhua 1) School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China 2) The State Key Laboratory for Management and Control of Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China Abstract: In this paper, we propose a motion estimation method based on a feed-forward radial basis network for grasping arbitrary moving objects. We first employ a kernel correlation filtering (KCF) algorithm to track the target position in real-time and establish the motion model of the target. Using the feed-forward radial base network, we then adjust the sampling time of the Kalman filter (KF) to predict the motion parameters of the target. Since that, we can reduce the computing time and improve the accuracy of the estimation of the motion parameters. Compared with the feed-forward perceptron network, the proposed method shortens the required time for grasping by 20%, which can avoid a failure grasp due to the arbitrary movement of the object in grasping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
14
期刊最新文献
Analysis and modeling of trucks travel choice preference under differentiated charging KSDP scheme for trajectory data publishing Urban road travel speed prediction based on multi-feature data fusion Influencing factors and measure of the activity space of the elderly: a case study of Kunming city Examination, optimization and application of automatic cryogenic vacuum distillation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1