具有壁面迁移的管道中粒子输运改进一维模型的离散坐标解析解

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED Journal of Computational and Theoretical Transport Pub Date : 2022-07-29 DOI:10.1080/23324309.2022.2110898
R. D. Garcia
{"title":"具有壁面迁移的管道中粒子输运改进一维模型的离散坐标解析解","authors":"R. D. Garcia","doi":"10.1080/23324309.2022.2110898","DOIUrl":null,"url":null,"abstract":"Abstract Analytical discrete-ordinates (ADO) solutions are developed for two improved one-dimensional (1D) models of particle transport in ducts that include wall migration. One of the studied models is based on an approximation of the transverse and azimuthal dependencies of the angular flux in terms of two basis functions, while the other uses three. Particle migration in the wall is modeled by an exponential displacement kernel. Numerical results for duct reflection and transmission probabilities are reported for various test cases, including some cases of thermal-neutron transport through iron, concrete, and graphite ducts that have been defined and studied by other authors. A comparison is performed with a set of published results comprising realistic results obtained with the Monte Carlo code MCNP and results from a numerical implementation of the discrete-ordinates method for the model based on three basis functions. To resolve some issues raised during the comparison process, a numerical discrete-ordinates solution of the problem has also been implemented in the course of this work.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"51 1","pages":"265 - 304"},"PeriodicalIF":0.7000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical Discrete-Ordinates Solutions for Improved 1D Models of Particle Transport in Ducts with Wall Migration\",\"authors\":\"R. D. Garcia\",\"doi\":\"10.1080/23324309.2022.2110898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Analytical discrete-ordinates (ADO) solutions are developed for two improved one-dimensional (1D) models of particle transport in ducts that include wall migration. One of the studied models is based on an approximation of the transverse and azimuthal dependencies of the angular flux in terms of two basis functions, while the other uses three. Particle migration in the wall is modeled by an exponential displacement kernel. Numerical results for duct reflection and transmission probabilities are reported for various test cases, including some cases of thermal-neutron transport through iron, concrete, and graphite ducts that have been defined and studied by other authors. A comparison is performed with a set of published results comprising realistic results obtained with the Monte Carlo code MCNP and results from a numerical implementation of the discrete-ordinates method for the model based on three basis functions. To resolve some issues raised during the comparison process, a numerical discrete-ordinates solution of the problem has also been implemented in the course of this work.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"51 1\",\"pages\":\"265 - 304\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2022.2110898\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2022.2110898","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要为两个改进的管道中颗粒传输的一维(1D)模型(包括壁迁移)开发了解析离散坐标(ADO)解。其中一个研究的模型是基于两个基函数对角通量的横向和方位相关性的近似,而另一个使用三个基函数。粒子在壁中的迁移是通过指数位移核来建模的。报告了各种试验情况下管道反射和透射概率的数值结果,包括其他作者定义和研究的热中子通过铁、混凝土和石墨管道传输的一些情况。与一组已发表的结果进行比较,该结果包括用蒙特卡罗代码MCNP获得的真实结果和基于三个基函数的模型的离散坐标方法的数值实现的结果。为了解决比较过程中提出的一些问题,在本工作过程中还实现了该问题的数值离散坐标解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Discrete-Ordinates Solutions for Improved 1D Models of Particle Transport in Ducts with Wall Migration
Abstract Analytical discrete-ordinates (ADO) solutions are developed for two improved one-dimensional (1D) models of particle transport in ducts that include wall migration. One of the studied models is based on an approximation of the transverse and azimuthal dependencies of the angular flux in terms of two basis functions, while the other uses three. Particle migration in the wall is modeled by an exponential displacement kernel. Numerical results for duct reflection and transmission probabilities are reported for various test cases, including some cases of thermal-neutron transport through iron, concrete, and graphite ducts that have been defined and studied by other authors. A comparison is performed with a set of published results comprising realistic results obtained with the Monte Carlo code MCNP and results from a numerical implementation of the discrete-ordinates method for the model based on three basis functions. To resolve some issues raised during the comparison process, a numerical discrete-ordinates solution of the problem has also been implemented in the course of this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
期刊最新文献
Exact Solutions for Radiative Transfer with Partial Frequency Redistribution The Extended Diamond Difference - Constant Nodal Method with Decoupled Cell Iteration Scheme in Two-Dimensional Discrete Ordinate Transport Problems A Numerical Simulation of the Magneto-Micropolar Nanofluid Flow Configured by the Stimulus Energies and Chemical Interaction Enhanced Thermoelectric Performance of PbTe Nanocomposites with Ag Nanoinclusions Diffusion Asymptotics With Fully Anisotropic Source and Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1