钒对NiTi形状记忆合金组织、转变温度和腐蚀行为的影响

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2022-10-07 DOI:10.1115/1.4055910
S. Sampath, Sampath Vedamanickam
{"title":"钒对NiTi形状记忆合金组织、转变温度和腐蚀行为的影响","authors":"S. Sampath, Sampath Vedamanickam","doi":"10.1115/1.4055910","DOIUrl":null,"url":null,"abstract":"\n Ni50Ti50-xVx (x = 0,1,2,3 at. %) shape memory alloys were prepared by vacuum induction melting. They were homogenized and then hot rolled. CHNOS and XRD analyses were carried out on the alloys to find out the oxygen and carbon contents and the phases present in the alloys. Transformation temperatures, determined by differential scanning calorimetry indicate that addition of vanadium reduces the transformation temperatures. Corrosion studies were carried out in Hanks’ solution, while potentiodynamic polarization tests were done to calculate the rate of corrosion of the alloys. Two significant parameters were analyzed from Tafel graph, namely, corrosion rate and corrosion potential. A comparison of these properties of the alloys was also made with commercially pure titanium and binary NiTi alloys. Among the NiTiV alloys, Ni50Ti47V3 (at.%) alloy was found to undergo the least rate of corrosion. With increasing vanadium content, the rate of corrosion was found to decrease. SEM analysis of the corroded surface shows that pitting was the main mechanism of corrosion in these alloys. Results show that addition of V to NiTi has a positive effect on the corrosion properties of the alloys. Elaborate results are discussed in detail in the paper.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effect of Vanadium on the Microstructure, Transformation Temperatures and Corrosion Behaviour of NiTi Shape Memory Alloys\",\"authors\":\"S. Sampath, Sampath Vedamanickam\",\"doi\":\"10.1115/1.4055910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ni50Ti50-xVx (x = 0,1,2,3 at. %) shape memory alloys were prepared by vacuum induction melting. They were homogenized and then hot rolled. CHNOS and XRD analyses were carried out on the alloys to find out the oxygen and carbon contents and the phases present in the alloys. Transformation temperatures, determined by differential scanning calorimetry indicate that addition of vanadium reduces the transformation temperatures. Corrosion studies were carried out in Hanks’ solution, while potentiodynamic polarization tests were done to calculate the rate of corrosion of the alloys. Two significant parameters were analyzed from Tafel graph, namely, corrosion rate and corrosion potential. A comparison of these properties of the alloys was also made with commercially pure titanium and binary NiTi alloys. Among the NiTiV alloys, Ni50Ti47V3 (at.%) alloy was found to undergo the least rate of corrosion. With increasing vanadium content, the rate of corrosion was found to decrease. SEM analysis of the corroded surface shows that pitting was the main mechanism of corrosion in these alloys. Results show that addition of V to NiTi has a positive effect on the corrosion properties of the alloys. Elaborate results are discussed in detail in the paper.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055910\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4055910","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 7

摘要

Ni50Ti50-xVx (x = 0,1,2,3 at)采用真空感应熔炼法制备了%)形状记忆合金。它们被均质化,然后热轧。对合金进行了CHNOS和XRD分析,确定了合金中的氧、碳含量和物相。差示扫描量热法测定的相变温度表明,钒的加入降低了相变温度。在Hanks溶液中进行腐蚀研究,同时进行动电位极化试验以计算合金的腐蚀速率。从塔菲尔图中分析了腐蚀速率和腐蚀电位两个重要参数。并与工业纯钛和二元NiTi合金进行了这些性能的比较。在NiTiV合金中,Ni50Ti47V3 (at.%)合金的腐蚀速率最小。随着钒含量的增加,腐蚀速率降低。腐蚀表面的SEM分析表明,点蚀是合金腐蚀的主要机理。结果表明,在NiTi中添加V对合金的腐蚀性能有积极的影响。本文对详细的结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Vanadium on the Microstructure, Transformation Temperatures and Corrosion Behaviour of NiTi Shape Memory Alloys
Ni50Ti50-xVx (x = 0,1,2,3 at. %) shape memory alloys were prepared by vacuum induction melting. They were homogenized and then hot rolled. CHNOS and XRD analyses were carried out on the alloys to find out the oxygen and carbon contents and the phases present in the alloys. Transformation temperatures, determined by differential scanning calorimetry indicate that addition of vanadium reduces the transformation temperatures. Corrosion studies were carried out in Hanks’ solution, while potentiodynamic polarization tests were done to calculate the rate of corrosion of the alloys. Two significant parameters were analyzed from Tafel graph, namely, corrosion rate and corrosion potential. A comparison of these properties of the alloys was also made with commercially pure titanium and binary NiTi alloys. Among the NiTiV alloys, Ni50Ti47V3 (at.%) alloy was found to undergo the least rate of corrosion. With increasing vanadium content, the rate of corrosion was found to decrease. SEM analysis of the corroded surface shows that pitting was the main mechanism of corrosion in these alloys. Results show that addition of V to NiTi has a positive effect on the corrosion properties of the alloys. Elaborate results are discussed in detail in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1