基于有限元和人工神经网络的钢板V形弯曲回弹工艺参数优化

IF 1.7 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Ironmaking & Steelmaking Pub Date : 2023-05-18 DOI:10.1080/03019233.2023.2210465
Varsha M. Magar, N. Agrawal
{"title":"基于有限元和人工神经网络的钢板V形弯曲回弹工艺参数优化","authors":"Varsha M. Magar, N. Agrawal","doi":"10.1080/03019233.2023.2210465","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spring back compensation is essential for accurate geometry of sheet metal components. In this paper the effect of process parameters namely sheet thickness, bend angle and tool travel rate on spring back in SS304 and C80 material sheets under V-bending is predicted by using finite element method and artificial neural network approaches. Total nine experiments were designed considering three process parameters, each with three levels, by using Taguchi`s L9 orthogonal array. The results obtained by ANN model are in good agreement with FEM model. This establish the robustness of ANN model for predicting spring back value and may be used an alternative to FEM model as the latter is more expensive and time consuming. The optimized value of sheet thickness, bend angle and tool travel rate are 2 mm, 80° and 6 mm ms–1 respectively for SS 304 material and 2 mm, 80° and 2 mm ms–1 for C80 material.","PeriodicalId":14753,"journal":{"name":"Ironmaking & Steelmaking","volume":"50 1","pages":"1352 - 1362"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process parameter optimization for spring back in steel grade sheet materials under V-bending using FEM and ANN approach\",\"authors\":\"Varsha M. Magar, N. Agrawal\",\"doi\":\"10.1080/03019233.2023.2210465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Spring back compensation is essential for accurate geometry of sheet metal components. In this paper the effect of process parameters namely sheet thickness, bend angle and tool travel rate on spring back in SS304 and C80 material sheets under V-bending is predicted by using finite element method and artificial neural network approaches. Total nine experiments were designed considering three process parameters, each with three levels, by using Taguchi`s L9 orthogonal array. The results obtained by ANN model are in good agreement with FEM model. This establish the robustness of ANN model for predicting spring back value and may be used an alternative to FEM model as the latter is more expensive and time consuming. The optimized value of sheet thickness, bend angle and tool travel rate are 2 mm, 80° and 6 mm ms–1 respectively for SS 304 material and 2 mm, 80° and 2 mm ms–1 for C80 material.\",\"PeriodicalId\":14753,\"journal\":{\"name\":\"Ironmaking & Steelmaking\",\"volume\":\"50 1\",\"pages\":\"1352 - 1362\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ironmaking & Steelmaking\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/03019233.2023.2210465\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ironmaking & Steelmaking","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/03019233.2023.2210465","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要回弹补偿对于精确的钣金零件几何结构至关重要。本文采用有限元方法和人工神经网络方法,预测了SS304和C80材料板材V形弯曲时,板材厚度、弯曲角度和刀具行程速率等工艺参数对回弹的影响。利用田口L9正交阵列设计了总共九个实验,考虑了三个工艺参数,每个参数有三个水平。人工神经网络模型的计算结果与有限元模型吻合较好。这建立了用于预测回弹值的ANN模型的鲁棒性,并且可以用作FEM模型的替代方案,因为后者更昂贵且更耗时。对于SS 304材料,板材厚度、弯曲角度和刀具移动速率的优化值分别为2 mm、80°和6 mm ms–1,对于C80材料,则分别为2 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process parameter optimization for spring back in steel grade sheet materials under V-bending using FEM and ANN approach
ABSTRACT Spring back compensation is essential for accurate geometry of sheet metal components. In this paper the effect of process parameters namely sheet thickness, bend angle and tool travel rate on spring back in SS304 and C80 material sheets under V-bending is predicted by using finite element method and artificial neural network approaches. Total nine experiments were designed considering three process parameters, each with three levels, by using Taguchi`s L9 orthogonal array. The results obtained by ANN model are in good agreement with FEM model. This establish the robustness of ANN model for predicting spring back value and may be used an alternative to FEM model as the latter is more expensive and time consuming. The optimized value of sheet thickness, bend angle and tool travel rate are 2 mm, 80° and 6 mm ms–1 respectively for SS 304 material and 2 mm, 80° and 2 mm ms–1 for C80 material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ironmaking & Steelmaking
Ironmaking & Steelmaking 工程技术-冶金工程
CiteScore
3.70
自引率
9.50%
发文量
125
审稿时长
2.9 months
期刊介绍: Ironmaking & Steelmaking: Processes, Products and Applications monitors international technological advances in the industry with a strong element of engineering and product related material. First class refereed papers from the international iron and steel community cover all stages of the process, from ironmaking and its attendant technologies, through casting and steelmaking, to rolling, forming and delivery of the product, including monitoring, quality assurance and environmental issues. The journal also carries research profiles, features on technological and industry developments and expert reviews on major conferences.
期刊最新文献
Statement of Retraction: The effect of laminar cooling heat transfer coefficient on the temperature field of steel plate Steel World Editorial 50.10 Effect of coke reactivity on reduction behaviours and non-isothermal kinetics of sinter at 1173–1373 K Motion behaviour of solid inclusions at the steel–slag interface in high-Al steel Numerical study on a new swirling flow pocket brick for tundish upper nozzle during continuous casting of steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1