{"title":"基于dp的背包共享算法与fptas及相关问题","authors":"S. Kataoka, Takeo Yamada","doi":"10.15807/JORSJ.62.1","DOIUrl":null,"url":null,"abstract":"In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic situation in which two or more players (agents) compete for their share of capacity in a knapsack with their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programmingbased (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only weakly NP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP computation to obtain a fully polynomial time approximation scheme (FPTAS) for XKSP with two agents. Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.62.1","citationCount":"1","resultStr":"{\"title\":\"DP-BASED ALGORITHM AND FPTAS FOR THE KNAPSACK SHARING AND RELATED PROBLEMS\",\"authors\":\"S. Kataoka, Takeo Yamada\",\"doi\":\"10.15807/JORSJ.62.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic situation in which two or more players (agents) compete for their share of capacity in a knapsack with their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programmingbased (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only weakly NP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP computation to obtain a fully polynomial time approximation scheme (FPTAS) for XKSP with two agents. Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15807/JORSJ.62.1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/JORSJ.62.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.62.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
DP-BASED ALGORITHM AND FPTAS FOR THE KNAPSACK SHARING AND RELATED PROBLEMS
In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic situation in which two or more players (agents) compete for their share of capacity in a knapsack with their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programmingbased (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only weakly NP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP computation to obtain a fully polynomial time approximation scheme (FPTAS) for XKSP with two agents. Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.
期刊介绍:
The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.