微波辅助热解(MAP)法制备Petung Bamboo茎秆活性炭的研究

W. Astuti, Rayhan Mukti Ramadhan, Vista Ayudya Octaviany
{"title":"微波辅助热解(MAP)法制备Petung Bamboo茎秆活性炭的研究","authors":"W. Astuti, Rayhan Mukti Ramadhan, Vista Ayudya Octaviany","doi":"10.15294/jbat.v11i1.36939","DOIUrl":null,"url":null,"abstract":"Biogas has emerged as a promising alternative to gasoline due to the depletion of fossil energy and environmental concerns. An investigation was conducted to study the technical feasibility of an adsorbed natural gas (ANG) storage system using petung bamboo-activated carbons. The activated carbons were prepared by microwave-assisted pyrolysis (MAP) and a hybrid heating system for comparison. Microwave-assisted pyrolysis is a promising alternative technology for biochar production because it has several advantages over conventional pyrolysis such as uniform heating temperature, lower energy consumption, and uniform pore size. The characteristics of the obtained activated carbons were evaluated by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy. The results showed that the higher power led to the shorter pyrolysis time. However, at a certain point, the higher power causes the biomass is not degraded completely. In this case, a microwave oven with 2 magnetrons produces a better heating temperature profile than the use of 1 magnetron. The character of activated carbon prepared using 70% power output (1120 W) is better than activated carbon prepared using 60% power output (960 W). In this condition, the pore size is more uniform and the number of functional groups is less. This implies that the petung bamboo activated carbon is the ideal candidate for ANG storage.","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Activated Carbon from Petung Bamboo Stems (Dendrocalamus Asper) Using Microwave-Assisted Pyrolysis (MAP) Process for Biogas Storage\",\"authors\":\"W. Astuti, Rayhan Mukti Ramadhan, Vista Ayudya Octaviany\",\"doi\":\"10.15294/jbat.v11i1.36939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biogas has emerged as a promising alternative to gasoline due to the depletion of fossil energy and environmental concerns. An investigation was conducted to study the technical feasibility of an adsorbed natural gas (ANG) storage system using petung bamboo-activated carbons. The activated carbons were prepared by microwave-assisted pyrolysis (MAP) and a hybrid heating system for comparison. Microwave-assisted pyrolysis is a promising alternative technology for biochar production because it has several advantages over conventional pyrolysis such as uniform heating temperature, lower energy consumption, and uniform pore size. The characteristics of the obtained activated carbons were evaluated by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy. The results showed that the higher power led to the shorter pyrolysis time. However, at a certain point, the higher power causes the biomass is not degraded completely. In this case, a microwave oven with 2 magnetrons produces a better heating temperature profile than the use of 1 magnetron. The character of activated carbon prepared using 70% power output (1120 W) is better than activated carbon prepared using 60% power output (960 W). In this condition, the pore size is more uniform and the number of functional groups is less. This implies that the petung bamboo activated carbon is the ideal candidate for ANG storage.\",\"PeriodicalId\":17764,\"journal\":{\"name\":\"Jurnal Bahan Alam Terbarukan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Bahan Alam Terbarukan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/jbat.v11i1.36939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jbat.v11i1.36939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于化石能源的枯竭和对环境的担忧,沼气已经成为一种有前途的汽油替代品。研究了竹材活性炭吸附天然气(ANG)储存系统的技术可行性。采用微波辅助热解法(MAP)和混合加热法制备活性炭进行对比。微波辅助热解是一种很有前途的生物炭替代技术,因为它比传统热解具有加热温度均匀、能耗低、孔径均匀等优点。用扫描电子显微镜(SEM)和傅里叶变换红外光谱对所得活性炭进行了表征。结果表明,功率越大,热解时间越短。然而,在一定程度上,较高的功率导致生物质不能完全降解。在这种情况下,使用2个磁控管的微波炉比使用1个磁控管产生更好的加热温度分布。70%功率输出(1120 W)制备的活性炭性能优于60%功率输出(960 W)制备的活性炭,且孔径更均匀,官能团数量更少。这意味着,竹材活性炭是理想的候选物的ANG储存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Activated Carbon from Petung Bamboo Stems (Dendrocalamus Asper) Using Microwave-Assisted Pyrolysis (MAP) Process for Biogas Storage
Biogas has emerged as a promising alternative to gasoline due to the depletion of fossil energy and environmental concerns. An investigation was conducted to study the technical feasibility of an adsorbed natural gas (ANG) storage system using petung bamboo-activated carbons. The activated carbons were prepared by microwave-assisted pyrolysis (MAP) and a hybrid heating system for comparison. Microwave-assisted pyrolysis is a promising alternative technology for biochar production because it has several advantages over conventional pyrolysis such as uniform heating temperature, lower energy consumption, and uniform pore size. The characteristics of the obtained activated carbons were evaluated by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy. The results showed that the higher power led to the shorter pyrolysis time. However, at a certain point, the higher power causes the biomass is not degraded completely. In this case, a microwave oven with 2 magnetrons produces a better heating temperature profile than the use of 1 magnetron. The character of activated carbon prepared using 70% power output (1120 W) is better than activated carbon prepared using 60% power output (960 W). In this condition, the pore size is more uniform and the number of functional groups is less. This implies that the petung bamboo activated carbon is the ideal candidate for ANG storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Optimization of Rhizopus Sp. Growth Media for Biofoam Manufacture: Effect of Temperature and Substrate Composition Optimization of Operating Condition for the Production of Edible Film from Cuttlefish’s Bone Gelatin as Instant Noodle Seasoning Packaging Preparation of Composite Reinforced Agent Based on Sweet Sorghum Stalk Fiber through Alkali Pressure Steam Treated Method The Properties of Particleboard Composites Made from Pleurotus ostreatus Baglog Waste Using Citric Acid and Sucrose Adhesive Optimization of Glycerolysis of Free Fatty Acids from Cocoa Bean with MgO Catalyst Using Response Surface Methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1