{"title":"变热导率和变扩散率下磁对流和化学反应纳米流体在拉伸圆柱体上流动的熵分析","authors":"G. Mandal","doi":"10.1166/jon.2023.1977","DOIUrl":null,"url":null,"abstract":"The current paper is on the boundary layer flow of a magnetohydrodynamic nanofluids (Cu, Al2O3 nanoparticles with base fluid water) flow over a linearly stretching cylinder. We have analyzed the entropy generation with heat and mass transfer in mixed convection,\n thermal radiation, viscous dissipation, variable thermal conductivity, variable mass diffusivity, and binary chemical reaction with activation energy. Convective boundary conditions are also considered here. No such attempt is yet made by the researchers on hybridization and entropy optimization\n model by considering variable thermal conductivity and variable mass diffusivity with binary chemical reaction with convective boundary conditions induced by a stretching cylinder. The efficient implicit Runge-Kutta-Fehlberg method with shooting technique is used for numerical solutions to\n the transformed-converted non-linear system of equations. The study is motivated by analyzing the effects on the nanofluid velocity, skin friction coefficient, temperature distribution, Nusselt number, nanoparticles concentration, and Sherwood number inside the boundary layer. The impact of\n solid volume fraction, chemical reaction, and activation energy with entropy generation is the key findings of the current investigation. Variable thermal conductivity and variable diffusivity parameters hike temperature and concentration profile, respectively. Entropy and Bejan number are\n increasing functions for curvature parameters.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Entropy Analysis on Magneto-Convective and Chemically Reactive Nanofluids Flow Over a Stretching Cylinder in the Presence of Variable Thermal Conductivity and Variable Diffusivity\",\"authors\":\"G. Mandal\",\"doi\":\"10.1166/jon.2023.1977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paper is on the boundary layer flow of a magnetohydrodynamic nanofluids (Cu, Al2O3 nanoparticles with base fluid water) flow over a linearly stretching cylinder. We have analyzed the entropy generation with heat and mass transfer in mixed convection,\\n thermal radiation, viscous dissipation, variable thermal conductivity, variable mass diffusivity, and binary chemical reaction with activation energy. Convective boundary conditions are also considered here. No such attempt is yet made by the researchers on hybridization and entropy optimization\\n model by considering variable thermal conductivity and variable mass diffusivity with binary chemical reaction with convective boundary conditions induced by a stretching cylinder. The efficient implicit Runge-Kutta-Fehlberg method with shooting technique is used for numerical solutions to\\n the transformed-converted non-linear system of equations. The study is motivated by analyzing the effects on the nanofluid velocity, skin friction coefficient, temperature distribution, Nusselt number, nanoparticles concentration, and Sherwood number inside the boundary layer. The impact of\\n solid volume fraction, chemical reaction, and activation energy with entropy generation is the key findings of the current investigation. Variable thermal conductivity and variable diffusivity parameters hike temperature and concentration profile, respectively. Entropy and Bejan number are\\n increasing functions for curvature parameters.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.1977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Entropy Analysis on Magneto-Convective and Chemically Reactive Nanofluids Flow Over a Stretching Cylinder in the Presence of Variable Thermal Conductivity and Variable Diffusivity
The current paper is on the boundary layer flow of a magnetohydrodynamic nanofluids (Cu, Al2O3 nanoparticles with base fluid water) flow over a linearly stretching cylinder. We have analyzed the entropy generation with heat and mass transfer in mixed convection,
thermal radiation, viscous dissipation, variable thermal conductivity, variable mass diffusivity, and binary chemical reaction with activation energy. Convective boundary conditions are also considered here. No such attempt is yet made by the researchers on hybridization and entropy optimization
model by considering variable thermal conductivity and variable mass diffusivity with binary chemical reaction with convective boundary conditions induced by a stretching cylinder. The efficient implicit Runge-Kutta-Fehlberg method with shooting technique is used for numerical solutions to
the transformed-converted non-linear system of equations. The study is motivated by analyzing the effects on the nanofluid velocity, skin friction coefficient, temperature distribution, Nusselt number, nanoparticles concentration, and Sherwood number inside the boundary layer. The impact of
solid volume fraction, chemical reaction, and activation energy with entropy generation is the key findings of the current investigation. Variable thermal conductivity and variable diffusivity parameters hike temperature and concentration profile, respectively. Entropy and Bejan number are
increasing functions for curvature parameters.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.