{"title":"铝合金飞机面板结构双激光双向同步焊接变形及残余应力模拟","authors":"X. Zhan, Yun Liu, Yao Meng, W. Ou, Yanhong Wei","doi":"10.1504/IJCMSSE.2019.10023923","DOIUrl":null,"url":null,"abstract":"This paper reports a numerical investigation of dual laser-beam bilateral synchronous welding (DLBSW) for T-joint structure of aircraft fuselage. Finite element numerical simulation of DLBSW is carried out to obtain suitable matching of welding parameters for civil aircraft panels which composed of 6156 aluminium alloy skin and 6056 aluminium alloy stringer. The distribution of welding residual stress and welding distortion on the aircraft panels are predicted and discussed. Three-dimensional finite element model of the panel containing three stringers has been developed to simulate the temperature field, residual stress distribution and welded panel distortion. It is simulated that three stringers are welded to base plate of the specimen through different welding sequences and the welding sequence with the smallest distortion is acquired.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The deformation and residual stress simulation of dual laser-beam bilateral synchronous welding for Al-alloy aircraft panel structure\",\"authors\":\"X. Zhan, Yun Liu, Yao Meng, W. Ou, Yanhong Wei\",\"doi\":\"10.1504/IJCMSSE.2019.10023923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a numerical investigation of dual laser-beam bilateral synchronous welding (DLBSW) for T-joint structure of aircraft fuselage. Finite element numerical simulation of DLBSW is carried out to obtain suitable matching of welding parameters for civil aircraft panels which composed of 6156 aluminium alloy skin and 6056 aluminium alloy stringer. The distribution of welding residual stress and welding distortion on the aircraft panels are predicted and discussed. Three-dimensional finite element model of the panel containing three stringers has been developed to simulate the temperature field, residual stress distribution and welded panel distortion. It is simulated that three stringers are welded to base plate of the specimen through different welding sequences and the welding sequence with the smallest distortion is acquired.\",\"PeriodicalId\":39426,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Surface Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Surface Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCMSSE.2019.10023923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCMSSE.2019.10023923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
The deformation and residual stress simulation of dual laser-beam bilateral synchronous welding for Al-alloy aircraft panel structure
This paper reports a numerical investigation of dual laser-beam bilateral synchronous welding (DLBSW) for T-joint structure of aircraft fuselage. Finite element numerical simulation of DLBSW is carried out to obtain suitable matching of welding parameters for civil aircraft panels which composed of 6156 aluminium alloy skin and 6056 aluminium alloy stringer. The distribution of welding residual stress and welding distortion on the aircraft panels are predicted and discussed. Three-dimensional finite element model of the panel containing three stringers has been developed to simulate the temperature field, residual stress distribution and welded panel distortion. It is simulated that three stringers are welded to base plate of the specimen through different welding sequences and the welding sequence with the smallest distortion is acquired.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.