印度运行预测中与灌溉区干燥土壤相关的大气偏差在白天系统性增加

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2023-05-08 DOI:10.1002/asl.1172
Emma J. Barton, C. M. Taylor, A. K. Mitra, A. Jayakumar
{"title":"印度运行预测中与灌溉区干燥土壤相关的大气偏差在白天系统性增加","authors":"Emma J. Barton,&nbsp;C. M. Taylor,&nbsp;A. K. Mitra,&nbsp;A. Jayakumar","doi":"10.1002/asl.1172","DOIUrl":null,"url":null,"abstract":"<p>The representation of land–atmosphere coupling in forecast models can significantly impact weather prediction. A previous case study in Northern India incorporating both model and observational data identified atmospheric biases in a high-resolution forecast linked to soil moisture that impacted the representation of the monsoon trough, an important driver of regional rainfall. The aim of the current work is to understand whether this behavior is present in operational forecasts run by the India National Centre for Medium Range Weather Forecasting (NCMRWF). We utilize satellite observations and reanalysis to evaluate model fields in June, July, August, and September forecasts from 2020. Our analysis reveals systematic rapid growth in warm boundary layer biases during the daytime over North West India, which weaken overnight, consistent with excessive daytime surface sensible heat flux. The cumulative effect of these biases produces temperatures more than 4K warmer in 60-h forecasts. These effects are enhanced by dry surface conditions. The biases impact circulation in the forecasts, which have implications for regional rainfall. The spatial distribution of warm biases in the Indo-Gangetic Plain is remarkably consistent with the location of areas equipped for irrigation, a process that is not explicitly represented in the model. Our results provide compelling evidence that the development of an irrigation scheme within the model is needed to address the substantial forecast biases that we document.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1172","citationCount":"0","resultStr":"{\"title\":\"Systematic daytime increases in atmospheric biases linked to dry soils in irrigated areas in Indian operational forecasts\",\"authors\":\"Emma J. Barton,&nbsp;C. M. Taylor,&nbsp;A. K. Mitra,&nbsp;A. Jayakumar\",\"doi\":\"10.1002/asl.1172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The representation of land–atmosphere coupling in forecast models can significantly impact weather prediction. A previous case study in Northern India incorporating both model and observational data identified atmospheric biases in a high-resolution forecast linked to soil moisture that impacted the representation of the monsoon trough, an important driver of regional rainfall. The aim of the current work is to understand whether this behavior is present in operational forecasts run by the India National Centre for Medium Range Weather Forecasting (NCMRWF). We utilize satellite observations and reanalysis to evaluate model fields in June, July, August, and September forecasts from 2020. Our analysis reveals systematic rapid growth in warm boundary layer biases during the daytime over North West India, which weaken overnight, consistent with excessive daytime surface sensible heat flux. The cumulative effect of these biases produces temperatures more than 4K warmer in 60-h forecasts. These effects are enhanced by dry surface conditions. The biases impact circulation in the forecasts, which have implications for regional rainfall. The spatial distribution of warm biases in the Indo-Gangetic Plain is remarkably consistent with the location of areas equipped for irrigation, a process that is not explicitly represented in the model. Our results provide compelling evidence that the development of an irrigation scheme within the model is needed to address the substantial forecast biases that we document.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1172\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1172","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

预报模式中陆-气耦合的表征对天气预报有重要影响。先前在印度北部进行的一个案例研究结合了模式和观测数据,确定了与土壤湿度相关的高分辨率预测中的大气偏差,这影响了季风槽的表现,季风槽是区域降雨的重要驱动因素。当前工作的目的是了解这种行为是否存在于印度国家中期天气预报中心(NCMRWF)的业务预报中。我们利用卫星观测和再分析来评估2020年6月、7月、8月和9月的模式场预报。我们的分析显示,印度西北部白天暖边界层偏倚系统地快速增长,夜间偏倚减弱,与白天地表感热通量过大一致。这些偏差的累积效应导致在60小时的预测中温度升高超过4K。干燥的表面条件增强了这些效果。这些偏差影响预报中的环流,从而对区域降雨产生影响。印度河-恒河平原暖偏的空间分布与灌溉地区的位置非常一致,这一过程在模型中没有明确表示。我们的结果提供了令人信服的证据,表明需要在模型内开发灌溉方案来解决我们记录的大量预测偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic daytime increases in atmospheric biases linked to dry soils in irrigated areas in Indian operational forecasts

The representation of land–atmosphere coupling in forecast models can significantly impact weather prediction. A previous case study in Northern India incorporating both model and observational data identified atmospheric biases in a high-resolution forecast linked to soil moisture that impacted the representation of the monsoon trough, an important driver of regional rainfall. The aim of the current work is to understand whether this behavior is present in operational forecasts run by the India National Centre for Medium Range Weather Forecasting (NCMRWF). We utilize satellite observations and reanalysis to evaluate model fields in June, July, August, and September forecasts from 2020. Our analysis reveals systematic rapid growth in warm boundary layer biases during the daytime over North West India, which weaken overnight, consistent with excessive daytime surface sensible heat flux. The cumulative effect of these biases produces temperatures more than 4K warmer in 60-h forecasts. These effects are enhanced by dry surface conditions. The biases impact circulation in the forecasts, which have implications for regional rainfall. The spatial distribution of warm biases in the Indo-Gangetic Plain is remarkably consistent with the location of areas equipped for irrigation, a process that is not explicitly represented in the model. Our results provide compelling evidence that the development of an irrigation scheme within the model is needed to address the substantial forecast biases that we document.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information A simple subtropical high‐pressure system index over the South Atlantic Towards replacing precipitation ensemble predictions systems using machine learning Accuracy of daily extreme air temperatures under natural variations in thermometer screen ventilation Changing dynamics of Western European summertime cut‐off lows: A case study of the July 2021 flood event
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1