L. R. Botvina, E. N. Beletsky, M. R. Tyutin, Yu. A. Demina, I. O. Sinev, A. I. Bolotnikov
{"title":"30CrMnSiA钢在混合模式载荷下的断裂","authors":"L. R. Botvina, E. N. Beletsky, M. R. Tyutin, Yu. A. Demina, I. O. Sinev, A. I. Bolotnikov","doi":"10.1134/S1029959923040021","DOIUrl":null,"url":null,"abstract":"<p>Notched 30CrMnSiA steel specimens were exposed to rupture load (mode I) at an angle of 90° between their fracture surface and load direction and to shear load (mode II) at an angle of 45° and 15°. For shear loading, Richard’s grips were used allowing one to vary the load from pure tension to pure shear by varying the notch orientation angle to the tensile load direction. Assessed under loading were the parameters of acoustic emission (AE) and strain fields (by the digital image correlation (DIC) method), and after failure, the damage parameters and microhardness on the polished lateral surface of the specimens, and the macro- and microreliefs of fracture surfaces. It is shown that increasing the shear component under tension changes the mechanical and the acoustic parameters of the specimens (total number of AE signals, their activity, <i>b</i><sub>AE</sub>-value), and the critical temperature of brittleness, changing the fracture surface morphology from ductile to brittle at a load orientation of 45°. Simultaneously, a nonlinear dependence of the damage parameters (relative area of microcracks <i>S</i><sup><i>*</i></sup>, their average length <i>l</i><sub>av</sub>, orientation to the loading axis) on the load angle is observed, showing a correlation with principal strains estimated by the DIC method.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 4","pages":"391 - 401"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture of 30CrMnSiA Steel under Mixed-Mode Loads\",\"authors\":\"L. R. Botvina, E. N. Beletsky, M. R. Tyutin, Yu. A. Demina, I. O. Sinev, A. I. Bolotnikov\",\"doi\":\"10.1134/S1029959923040021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Notched 30CrMnSiA steel specimens were exposed to rupture load (mode I) at an angle of 90° between their fracture surface and load direction and to shear load (mode II) at an angle of 45° and 15°. For shear loading, Richard’s grips were used allowing one to vary the load from pure tension to pure shear by varying the notch orientation angle to the tensile load direction. Assessed under loading were the parameters of acoustic emission (AE) and strain fields (by the digital image correlation (DIC) method), and after failure, the damage parameters and microhardness on the polished lateral surface of the specimens, and the macro- and microreliefs of fracture surfaces. It is shown that increasing the shear component under tension changes the mechanical and the acoustic parameters of the specimens (total number of AE signals, their activity, <i>b</i><sub>AE</sub>-value), and the critical temperature of brittleness, changing the fracture surface morphology from ductile to brittle at a load orientation of 45°. Simultaneously, a nonlinear dependence of the damage parameters (relative area of microcracks <i>S</i><sup><i>*</i></sup>, their average length <i>l</i><sub>av</sub>, orientation to the loading axis) on the load angle is observed, showing a correlation with principal strains estimated by the DIC method.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"26 4\",\"pages\":\"391 - 401\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959923040021\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923040021","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Fracture of 30CrMnSiA Steel under Mixed-Mode Loads
Notched 30CrMnSiA steel specimens were exposed to rupture load (mode I) at an angle of 90° between their fracture surface and load direction and to shear load (mode II) at an angle of 45° and 15°. For shear loading, Richard’s grips were used allowing one to vary the load from pure tension to pure shear by varying the notch orientation angle to the tensile load direction. Assessed under loading were the parameters of acoustic emission (AE) and strain fields (by the digital image correlation (DIC) method), and after failure, the damage parameters and microhardness on the polished lateral surface of the specimens, and the macro- and microreliefs of fracture surfaces. It is shown that increasing the shear component under tension changes the mechanical and the acoustic parameters of the specimens (total number of AE signals, their activity, bAE-value), and the critical temperature of brittleness, changing the fracture surface morphology from ductile to brittle at a load orientation of 45°. Simultaneously, a nonlinear dependence of the damage parameters (relative area of microcracks S*, their average length lav, orientation to the loading axis) on the load angle is observed, showing a correlation with principal strains estimated by the DIC method.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.