求解幂次ml -收益函数Black Scholes方程的PDTM方法

IF 1.1 Q2 MATHEMATICS, APPLIED Computational Methods for Differential Equations Pub Date : 2021-03-21 DOI:10.22034/CMDE.2021.37944.1675
S. J. Ghevariya
{"title":"求解幂次ml -收益函数Black Scholes方程的PDTM方法","authors":"S. J. Ghevariya","doi":"10.22034/CMDE.2021.37944.1675","DOIUrl":null,"url":null,"abstract":"In this paper, the Projected Differential Transform Method (PDTM) has been used to solve the Black Scholes differential equation for powered Modified Log Payoff (ML-Payoff) functions, $max {S^klnbig(frac{S}{K}big),0}$ and $max{S^klnbig(frac{K}{S}big),0}, (kin mathbb{R^{+}}cup {0})$. It is the generalization of Black Scholes model for ML-Payoff functions. It can be seen that values from PDTM is quite accurate to the closed form solutions.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PDTM Approach to Solve Black Scholes Equation for Powered ML-Payoff Function\",\"authors\":\"S. J. Ghevariya\",\"doi\":\"10.22034/CMDE.2021.37944.1675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Projected Differential Transform Method (PDTM) has been used to solve the Black Scholes differential equation for powered Modified Log Payoff (ML-Payoff) functions, $max {S^klnbig(frac{S}{K}big),0}$ and $max{S^klnbig(frac{K}{S}big),0}, (kin mathbb{R^{+}}cup {0})$. It is the generalization of Black Scholes model for ML-Payoff functions. It can be seen that values from PDTM is quite accurate to the closed form solutions.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.37944.1675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.37944.1675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,投影微分变换方法(PDTM)被用于求解幂次修正对数收益函数的Black-Scholes微分方程,$max{S^klnbig(frac{S}{K}big),0}$和$max{S^klnbig(frac{K}{S}big),0},(kin-mathbb{R^{+}}cup{0})$。它是Black-Scholes模型对ML Payoff函数的推广。可以看出,PDTM的值对于闭合形式的解是相当精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDTM Approach to Solve Black Scholes Equation for Powered ML-Payoff Function
In this paper, the Projected Differential Transform Method (PDTM) has been used to solve the Black Scholes differential equation for powered Modified Log Payoff (ML-Payoff) functions, $max {S^klnbig(frac{S}{K}big),0}$ and $max{S^klnbig(frac{K}{S}big),0}, (kin mathbb{R^{+}}cup {0})$. It is the generalization of Black Scholes model for ML-Payoff functions. It can be seen that values from PDTM is quite accurate to the closed form solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
期刊最新文献
Two explicit and implicit finite difference schemes for time fractional Riesz space diffusion equation An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity A Study on Homotopy Analysis Method and Clique Polynomial Method Hybrid shrinking projection extragradient-like algorithms for equilibrium and fixed point problems A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1