使用自适应遗传算法的软件测试

A. Damia, M. Esnaashari, Mohammadreza Parvizimosaed
{"title":"使用自适应遗传算法的软件测试","authors":"A. Damia, M. Esnaashari, Mohammadreza Parvizimosaed","doi":"10.22044/JADM.2021.10018.2138","DOIUrl":null,"url":null,"abstract":"In the structural software test, test data generation is essential. The problem of generating test data is a search problem, and for solving the problem, search algorithms can be used. Genetic algorithm is one of the most widely used algorithms in this field. Adjusting genetic algorithm parameters helps to increase the effectiveness of this algorithm. In this paper, the Adaptive Genetic Algorithm (AGA) is used to maintain the diversity of the population to test data generation based on path coverage criterion, which calculates the rate of recombination and mutation with the similarity between chromosomes and the amount of chromosome fitness during and around each algorithm. Experiments have shown that this method is faster for generating test data than other versions of the genetic algorithm used by others.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Software Testing using an Adaptive Genetic Algorithm\",\"authors\":\"A. Damia, M. Esnaashari, Mohammadreza Parvizimosaed\",\"doi\":\"10.22044/JADM.2021.10018.2138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the structural software test, test data generation is essential. The problem of generating test data is a search problem, and for solving the problem, search algorithms can be used. Genetic algorithm is one of the most widely used algorithms in this field. Adjusting genetic algorithm parameters helps to increase the effectiveness of this algorithm. In this paper, the Adaptive Genetic Algorithm (AGA) is used to maintain the diversity of the population to test data generation based on path coverage criterion, which calculates the rate of recombination and mutation with the similarity between chromosomes and the amount of chromosome fitness during and around each algorithm. Experiments have shown that this method is faster for generating test data than other versions of the genetic algorithm used by others.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2021.10018.2138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2021.10018.2138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在结构软件测试中,测试数据的生成是必不可少的。生成测试数据的问题是一个搜索问题,为了解决这个问题,可以使用搜索算法。遗传算法是该领域应用最广泛的算法之一。调整遗传算法参数有助于提高该算法的有效性。本文使用自适应遗传算法(AGA)来保持群体的多样性,以基于路径覆盖准则的测试数据生成,该算法根据染色体之间的相似性以及每个算法期间和周围的染色体适应度来计算重组和突变率。实验表明,这种方法在生成测试数据方面比其他人使用的其他版本的遗传算法更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software Testing using an Adaptive Genetic Algorithm
In the structural software test, test data generation is essential. The problem of generating test data is a search problem, and for solving the problem, search algorithms can be used. Genetic algorithm is one of the most widely used algorithms in this field. Adjusting genetic algorithm parameters helps to increase the effectiveness of this algorithm. In this paper, the Adaptive Genetic Algorithm (AGA) is used to maintain the diversity of the population to test data generation based on path coverage criterion, which calculates the rate of recombination and mutation with the similarity between chromosomes and the amount of chromosome fitness during and around each algorithm. Experiments have shown that this method is faster for generating test data than other versions of the genetic algorithm used by others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1