用于汽车应用的碳纤维增强环氧树脂和镀锌钢与激光结构界面的共结合

IF 1.8 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Advanced Composite Materials Pub Date : 2022-11-06 DOI:10.1080/09243046.2022.2143746
D. Voswinkel, J. Striewe, O. Grydin, D. Meinderink, G. Grundmeier, Mirko Schaper, T. Tröster
{"title":"用于汽车应用的碳纤维增强环氧树脂和镀锌钢与激光结构界面的共结合","authors":"D. Voswinkel, J. Striewe, O. Grydin, D. Meinderink, G. Grundmeier, Mirko Schaper, T. Tröster","doi":"10.1080/09243046.2022.2143746","DOIUrl":null,"url":null,"abstract":"Materially bonded hybrid systems with precisely adjusted interfacial properties are of great scientific and industrial interest with regard to lightweight construction. In the present study, a material composite of carbon fiber reinforced plastic (CFRP) and galvanized steel is considered, where the metallic surface is laser structured in order to improve the adhesion properties. The resulting joining properties will be elicited by tensile shear tests in comparison to an alkaline cleaned surface condition and blind riveting. The potential of direct-joined hybrid systems with laser-structured substrate surfaces will also be considered using an automotive roof frame as an example. In the tensile shear test, the direct-joined hybrid joint with laser-structured metal substrate achieves significantly higher joint strengths than after alkaline cleaning. Compared to an aluminum/steel reference structure, the CFRP/steel roof frame exhibits a significant weight advantage with superior mechanical properties under flexural and compressive loading.","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":"32 1","pages":"715 - 730"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Co-bonding of carbon fibre-reinforced epoxy and galvanised steel with laser structured interface for automotive applications\",\"authors\":\"D. Voswinkel, J. Striewe, O. Grydin, D. Meinderink, G. Grundmeier, Mirko Schaper, T. Tröster\",\"doi\":\"10.1080/09243046.2022.2143746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materially bonded hybrid systems with precisely adjusted interfacial properties are of great scientific and industrial interest with regard to lightweight construction. In the present study, a material composite of carbon fiber reinforced plastic (CFRP) and galvanized steel is considered, where the metallic surface is laser structured in order to improve the adhesion properties. The resulting joining properties will be elicited by tensile shear tests in comparison to an alkaline cleaned surface condition and blind riveting. The potential of direct-joined hybrid systems with laser-structured substrate surfaces will also be considered using an automotive roof frame as an example. In the tensile shear test, the direct-joined hybrid joint with laser-structured metal substrate achieves significantly higher joint strengths than after alkaline cleaning. Compared to an aluminum/steel reference structure, the CFRP/steel roof frame exhibits a significant weight advantage with superior mechanical properties under flexural and compressive loading.\",\"PeriodicalId\":7291,\"journal\":{\"name\":\"Advanced Composite Materials\",\"volume\":\"32 1\",\"pages\":\"715 - 730\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09243046.2022.2143746\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09243046.2022.2143746","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

摘要

具有精确调节的界面性质的材料结合混合系统在轻质结构方面具有巨大的科学和工业意义。在本研究中,考虑了一种由碳纤维增强塑料(CFRP)和镀锌钢组成的材料复合材料,其中金属表面被激光结构化,以提高粘合性能。与碱性清洁表面条件和盲铆接相比,拉伸剪切试验将得出最终的连接性能。以汽车车顶框架为例,还将考虑具有激光结构化基底表面的直接连接混合系统的潜力。在拉伸剪切试验中,与碱性清洗后相比,具有激光结构金属基底的直接连接混合接头实现了显著更高的接头强度。与铝/钢参考结构相比,CFRP/钢屋顶框架在弯曲和压缩载荷下表现出显著的重量优势和优异的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-bonding of carbon fibre-reinforced epoxy and galvanised steel with laser structured interface for automotive applications
Materially bonded hybrid systems with precisely adjusted interfacial properties are of great scientific and industrial interest with regard to lightweight construction. In the present study, a material composite of carbon fiber reinforced plastic (CFRP) and galvanized steel is considered, where the metallic surface is laser structured in order to improve the adhesion properties. The resulting joining properties will be elicited by tensile shear tests in comparison to an alkaline cleaned surface condition and blind riveting. The potential of direct-joined hybrid systems with laser-structured substrate surfaces will also be considered using an automotive roof frame as an example. In the tensile shear test, the direct-joined hybrid joint with laser-structured metal substrate achieves significantly higher joint strengths than after alkaline cleaning. Compared to an aluminum/steel reference structure, the CFRP/steel roof frame exhibits a significant weight advantage with superior mechanical properties under flexural and compressive loading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Composite Materials
Advanced Composite Materials 工程技术-材料科学:复合
CiteScore
5.00
自引率
20.70%
发文量
54
审稿时长
3 months
期刊介绍: "Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications. Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."
期刊最新文献
Structural health monitoring of type 4 composite fuel tank based on correlation between ultrasonic attenuation and crack density Comparison of post-impact residual strength ratio between hybrid filament-wound cylinder and hybrid plate specimen Highly efficient and reusable polyacrylonitrile-based nanocomposite sorbents for oil spill removal Shell element-based prediction of process-induced deformation considering the different fabric parameters and stacking sequences of CFRP woven composites Enhanced physical and mechanical properties of Cu-based nanocomposites with bundled multi-layered carbon nanotubes incorporation: fabrication and comparative analysis via conventional sintering and SPS techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1