基于CNN的北斗MEO中能电子数据离群值检测方法

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Open Astronomy Pub Date : 2023-01-01 DOI:10.1515/astro-2022-0196
Tian Chao, Cui Ruifei, Zhang Riwei, Xu Peikang, Chen Libo, Shang Jie, Quan Lin, Wan Yujun, Hu Sihui, Yue Fulu, Su Xing
{"title":"基于CNN的北斗MEO中能电子数据离群值检测方法","authors":"Tian Chao, Cui Ruifei, Zhang Riwei, Xu Peikang, Chen Libo, Shang Jie, Quan Lin, Wan Yujun, Hu Sihui, Yue Fulu, Su Xing","doi":"10.1515/astro-2022-0196","DOIUrl":null,"url":null,"abstract":"Abstract BeiDou Medium Earth Orbit moderate-energy electron detection data play an important role in space environment effect analysis including satellite anomaly diagnosis, satellite risk estimation, etc. However, the data contain outliers which cause obstacle for the subsequent usage significantly. To solve this problem, we propose an outlier detection method based on convolutional neural networks (CNNs) which can learn a rule from labeled historical data and detect outliers from the detection data. With this method, we can identify outliers and do some follow-up operations to improve the data quality. In comparison with general methods, this CNN method provides a more reliable and rapid way to build dataset for the follow-up work.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An outlier detection method with CNN for BeiDou MEO moderate-energy electron data\",\"authors\":\"Tian Chao, Cui Ruifei, Zhang Riwei, Xu Peikang, Chen Libo, Shang Jie, Quan Lin, Wan Yujun, Hu Sihui, Yue Fulu, Su Xing\",\"doi\":\"10.1515/astro-2022-0196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract BeiDou Medium Earth Orbit moderate-energy electron detection data play an important role in space environment effect analysis including satellite anomaly diagnosis, satellite risk estimation, etc. However, the data contain outliers which cause obstacle for the subsequent usage significantly. To solve this problem, we propose an outlier detection method based on convolutional neural networks (CNNs) which can learn a rule from labeled historical data and detect outliers from the detection data. With this method, we can identify outliers and do some follow-up operations to improve the data quality. In comparison with general methods, this CNN method provides a more reliable and rapid way to build dataset for the follow-up work.\",\"PeriodicalId\":19514,\"journal\":{\"name\":\"Open Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/astro-2022-0196\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0196","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要北斗中地球轨道中能电子探测数据在卫星异常诊断、卫星风险估计等空间环境效应分析中发挥着重要作用。然而,数据中含有异常值,这对后续的使用造成了很大的障碍。为了解决这一问题,我们提出了一种基于卷积神经网络(cnn)的异常点检测方法,该方法可以从标记的历史数据中学习规则,并从检测数据中检测异常点。通过这种方法,我们可以识别异常点,并进行一些后续操作,以提高数据质量。与一般方法相比,该CNN方法为后续工作提供了更可靠、更快速的数据集构建方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An outlier detection method with CNN for BeiDou MEO moderate-energy electron data
Abstract BeiDou Medium Earth Orbit moderate-energy electron detection data play an important role in space environment effect analysis including satellite anomaly diagnosis, satellite risk estimation, etc. However, the data contain outliers which cause obstacle for the subsequent usage significantly. To solve this problem, we propose an outlier detection method based on convolutional neural networks (CNNs) which can learn a rule from labeled historical data and detect outliers from the detection data. With this method, we can identify outliers and do some follow-up operations to improve the data quality. In comparison with general methods, this CNN method provides a more reliable and rapid way to build dataset for the follow-up work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Astronomy
Open Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍: The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.
期刊最新文献
A novel autonomous navigation constellation in the Earth–Moon system Asteroids discovered in the Baldone Observatory between 2017 and 2022: The orbits of asteroid 428694 Saule and 330836 Orius Intelligent collision avoidance strategy for all-electric propulsion GEO satellite orbit transfer control Stability of granular media impacts morphological characteristics under different impact conditions Parallel observations process of Tianwen-1 orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1