南极内生细菌促进植物生长的特性

I.O. Bortyanuy
{"title":"南极内生细菌促进植物生长的特性","authors":"I.O. Bortyanuy","doi":"10.15407/biotech15.04.005","DOIUrl":null,"url":null,"abstract":"Successful colonization of Antarctic lands by vascular plants Deschampsia antarctica and Colobanthus quitensis and their adaptation to stressful environments is associated not only with climate change but also with the functioning of microbial groups of phylo- and endosphere of these plants. The aim of our study was to screen plant growth-promoting traits in endophytic bacteria of antarctic vascular plants. Materials and methods. We have studied 8 bacterial cultures isolated from D. antarctica collected during the 25th Ukrainian Antarctic Expedition (January-April 2020) along the Western part of the Antarctic Peninsula. Overnight liquid cultures were obtained on Nutrient Broth medium (HiMedia, Ltd.) in a shaking incubator (26 ℃, 160 rpm). Bacterial isolates were grown on Ashby's combined-nitrogen-free medium with sucrose. Drop collapse assay for cyclic lipopeptide production (CLP), motility assay, exoprotease production and phosphate solubilizing ability were performed using generally accepted methods. Results. All studied isolates have shown plant growth-promoting traits. The most abundant were nitrogen-fixing activity and motility. Both these play important role in plant colonization and promoting the growth of plants in harsh environments. The evidences of CLP were shown by two strains only. There was no notice of phosphate solubilizing ability and exoprotease production. Conclusions. Endophytic bacteria of antarctic vascular plants could support the growth and nutrition needs of the plants.","PeriodicalId":9267,"journal":{"name":"Biotechnologia Acta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLANT GROWTH-PROMOTING TRAITS OF ANTARCTIC ENDOPHYTIC BACTERIA\",\"authors\":\"I.O. Bortyanuy\",\"doi\":\"10.15407/biotech15.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successful colonization of Antarctic lands by vascular plants Deschampsia antarctica and Colobanthus quitensis and their adaptation to stressful environments is associated not only with climate change but also with the functioning of microbial groups of phylo- and endosphere of these plants. The aim of our study was to screen plant growth-promoting traits in endophytic bacteria of antarctic vascular plants. Materials and methods. We have studied 8 bacterial cultures isolated from D. antarctica collected during the 25th Ukrainian Antarctic Expedition (January-April 2020) along the Western part of the Antarctic Peninsula. Overnight liquid cultures were obtained on Nutrient Broth medium (HiMedia, Ltd.) in a shaking incubator (26 ℃, 160 rpm). Bacterial isolates were grown on Ashby's combined-nitrogen-free medium with sucrose. Drop collapse assay for cyclic lipopeptide production (CLP), motility assay, exoprotease production and phosphate solubilizing ability were performed using generally accepted methods. Results. All studied isolates have shown plant growth-promoting traits. The most abundant were nitrogen-fixing activity and motility. Both these play important role in plant colonization and promoting the growth of plants in harsh environments. The evidences of CLP were shown by two strains only. There was no notice of phosphate solubilizing ability and exoprotease production. Conclusions. Endophytic bacteria of antarctic vascular plants could support the growth and nutrition needs of the plants.\",\"PeriodicalId\":9267,\"journal\":{\"name\":\"Biotechnologia Acta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnologia Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/biotech15.04.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnologia Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/biotech15.04.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

维管束植物南极Deschampsia and Colobanthus quitensis在南极陆地上的成功定殖及其对逆境环境的适应不仅与气候变化有关,而且与这些植物的门层和内圈微生物群的功能有关。本研究的目的是筛选南极维管植物内生细菌的植物促生性状。材料和方法。我们研究了在南极半岛西部第25次乌克兰南极考察(2020年1月至4月)期间收集的8种细菌培养物。在营养肉汤培养基(HiMedia, Ltd)的摇箱(26℃,160 rpm)中获得隔夜液体培养。分离的细菌在含蔗糖的Ashby无氮联合培养基上生长。采用普遍接受的方法进行了环脂肽生成(CLP)、活力测定、外蛋白酶生成和磷酸盐溶解能力的跌落试验。结果。所有研究的分离株都显示出促进植物生长的性状。最丰富的是固氮活性和运动性。这两种物质在植物定殖和促进植物在恶劣环境下的生长中起着重要作用。只有两株菌株显示了CLP的证据。没有注意到磷酸盐的溶解能力和外蛋白酶的产生。结论。南极维管植物的内生细菌能够支持植物的生长和营养需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLANT GROWTH-PROMOTING TRAITS OF ANTARCTIC ENDOPHYTIC BACTERIA
Successful colonization of Antarctic lands by vascular plants Deschampsia antarctica and Colobanthus quitensis and their adaptation to stressful environments is associated not only with climate change but also with the functioning of microbial groups of phylo- and endosphere of these plants. The aim of our study was to screen plant growth-promoting traits in endophytic bacteria of antarctic vascular plants. Materials and methods. We have studied 8 bacterial cultures isolated from D. antarctica collected during the 25th Ukrainian Antarctic Expedition (January-April 2020) along the Western part of the Antarctic Peninsula. Overnight liquid cultures were obtained on Nutrient Broth medium (HiMedia, Ltd.) in a shaking incubator (26 ℃, 160 rpm). Bacterial isolates were grown on Ashby's combined-nitrogen-free medium with sucrose. Drop collapse assay for cyclic lipopeptide production (CLP), motility assay, exoprotease production and phosphate solubilizing ability were performed using generally accepted methods. Results. All studied isolates have shown plant growth-promoting traits. The most abundant were nitrogen-fixing activity and motility. Both these play important role in plant colonization and promoting the growth of plants in harsh environments. The evidences of CLP were shown by two strains only. There was no notice of phosphate solubilizing ability and exoprotease production. Conclusions. Endophytic bacteria of antarctic vascular plants could support the growth and nutrition needs of the plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
20 weeks
期刊最新文献
BIOMEDICAL APPLICATION OF K5 PLASMINOGEN FRAGMENT COMPLEXATION OF CURCUMIN WITH BOVINE SERUM ALBUMIN AND DIPHTHERIA TOXOID CRM197 MECHANISMS OF ANTIVIRAL ACTIVITY OF FLAVONOIDS INFLUENCE OF BIOLOGICAL INDUCTORS ON THE SYNTHESIS AND BIOLOGICAL ACTIVITY OF MICROBIAL METABOLITES DYNAMICS OF THE PHENOLIC CONSTITUENTS AND ANTIOXIDANT ACTIVITY IN SUBMERGED CULTURES OF Xylaria SPECIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1