在牛粪厌氧消化过程中,利用生产生物柴油产生的肥皂废料加强沼气的产生

IF 0.3 Q4 ENERGY & FUELS Problemele Energeticii Regionale Pub Date : 2022-02-01 DOI:10.52254/1857-0070.2022.1-53.08
V. Polishchuk, S. Shvorov, G. Krusir, V. Didur, К. Witaszek, N. Pasichnyk, Yevgenyi Dvornyk, T. Davidenko
{"title":"在牛粪厌氧消化过程中,利用生产生物柴油产生的肥皂废料加强沼气的产生","authors":"V. Polishchuk, S. Shvorov, G. Krusir, V. Didur, К. Witaszek, N. Pasichnyk, Yevgenyi Dvornyk, T. Davidenko","doi":"10.52254/1857-0070.2022.1-53.08","DOIUrl":null,"url":null,"abstract":"The aim of the work is to increase the yield of biogas and the generation of electricity at biogas plants due to the joint fermentation of cattle manure with the addition of soap stock obtained from soap waste from biodiesel production. To achieve this goal, the following tasks were solved: the yield of biogas from cattle manure was determined with the addition of soap stock for a periodic mode of loading the substrate, taking into account the data obtained, a mathematical model of biogas output for a quasi-continuous mode of loading the substrate into the digester was developed and its adequacy was confirmed. The novelty of the work lies in the fact that according to the data of experimental studies of biogas yield at a periodic loading mode using this model, it is possible to predict the maximum biogas yield for a quasi-continuous mode of loading the digester. The significance of the research results lies in the fact that when soap stock is added to the substrate with a periodic mode of loading the digester, a general increase in the biogas yield without diauxy is observed by about 2 times. The optimal content of soap stock in the substrate for a quasi-continuous mode of loading the digester, at which the biogas yield will be maximum, is 1.32%. When electricity is sold at a feed-in tariff, the payback period of a biogas plant is reduced from 8.7 years to 5.0 years.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using soap waste from biodiesel production to intensify biogas generation during anaerobic digestion of cow dung\",\"authors\":\"V. Polishchuk, S. Shvorov, G. Krusir, V. Didur, К. Witaszek, N. Pasichnyk, Yevgenyi Dvornyk, T. Davidenko\",\"doi\":\"10.52254/1857-0070.2022.1-53.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the work is to increase the yield of biogas and the generation of electricity at biogas plants due to the joint fermentation of cattle manure with the addition of soap stock obtained from soap waste from biodiesel production. To achieve this goal, the following tasks were solved: the yield of biogas from cattle manure was determined with the addition of soap stock for a periodic mode of loading the substrate, taking into account the data obtained, a mathematical model of biogas output for a quasi-continuous mode of loading the substrate into the digester was developed and its adequacy was confirmed. The novelty of the work lies in the fact that according to the data of experimental studies of biogas yield at a periodic loading mode using this model, it is possible to predict the maximum biogas yield for a quasi-continuous mode of loading the digester. The significance of the research results lies in the fact that when soap stock is added to the substrate with a periodic mode of loading the digester, a general increase in the biogas yield without diauxy is observed by about 2 times. The optimal content of soap stock in the substrate for a quasi-continuous mode of loading the digester, at which the biogas yield will be maximum, is 1.32%. When electricity is sold at a feed-in tariff, the payback period of a biogas plant is reduced from 8.7 years to 5.0 years.\",\"PeriodicalId\":41974,\"journal\":{\"name\":\"Problemele Energeticii Regionale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemele Energeticii Regionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52254/1857-0070.2022.1-53.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemele Energeticii Regionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52254/1857-0070.2022.1-53.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是增加沼气产量和沼气厂的发电量,因为牛粪与添加从生物柴油生产中的肥皂废料中获得的肥皂原料联合发酵。为了实现这一目标,解决了以下任务:在周期性装载基质的模式下,通过添加皂料来确定牛粪中的沼气产量,考虑到所获得的数据,建立了将基质装载到消化池的准连续模式下的沼气产量数学模型,并确认了其充分性。这项工作的新颖性在于,根据使用该模型对周期性加载模式下的沼气产量进行实验研究的数据,可以预测沼气池加载的准连续模式下的最大沼气产量。研究结果的意义在于,当以周期性的蒸煮器加载模式将皂液添加到基质中时,观察到在没有渗滤的情况下沼气产量普遍增加了约2倍。对于沼气池的准连续加载模式(沼气产量最大),基质中皂料的最佳含量为1.32%。当以上网电价出售电力时,沼气厂的投资回收期从8.7年缩短到5.0年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using soap waste from biodiesel production to intensify biogas generation during anaerobic digestion of cow dung
The aim of the work is to increase the yield of biogas and the generation of electricity at biogas plants due to the joint fermentation of cattle manure with the addition of soap stock obtained from soap waste from biodiesel production. To achieve this goal, the following tasks were solved: the yield of biogas from cattle manure was determined with the addition of soap stock for a periodic mode of loading the substrate, taking into account the data obtained, a mathematical model of biogas output for a quasi-continuous mode of loading the substrate into the digester was developed and its adequacy was confirmed. The novelty of the work lies in the fact that according to the data of experimental studies of biogas yield at a periodic loading mode using this model, it is possible to predict the maximum biogas yield for a quasi-continuous mode of loading the digester. The significance of the research results lies in the fact that when soap stock is added to the substrate with a periodic mode of loading the digester, a general increase in the biogas yield without diauxy is observed by about 2 times. The optimal content of soap stock in the substrate for a quasi-continuous mode of loading the digester, at which the biogas yield will be maximum, is 1.32%. When electricity is sold at a feed-in tariff, the payback period of a biogas plant is reduced from 8.7 years to 5.0 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
38
期刊最新文献
Reduction of Voltage Fluctuations in Electrical Networks Supplying Motors with a Rapidly Changing Load by Installing Longitudinal Compensation Batteries Intelligent System of Relay Protection of Electrical Network 6-10 kV with the Implementation of Automatic Correction of the Operation Set Point Energy-Efficient Modes of Dehydration of Pome Fruits during Microwave Treatment in Combination with Convection Congestion Management Using an Optimized Deep Convolution Neural Network in Deregulated Environment Study of the Efficiency of Heat-Supply Systems with Steam Turbine CHP Plants, Taking into Account Changes in the Temperature of the Delivery Water during Transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1