{"title":"介孔Ni/ZrO2催化剂催化甲烷干重整","authors":"Subhan Azeem, R. Aslam, M. Saleem","doi":"10.1155/2022/3139696","DOIUrl":null,"url":null,"abstract":"Dry reforming of methane has exhibited significant environmental benefits as it utilizes two major greenhouse gases (CO2 and CH4) to produce synthesis gas, a major building block for hydrocarbons. This process has gained industrial attention as catalyst deactivation due to coke deposition being a major hindrance. The present study focuses on the dry reforming of methane over Ni-supported mesoporous zirconia support. Ni metal was loaded over in-house synthesized mesoporous zirconia within the 0–15 wt% range using the wet impregnation method. The physicochemical properties of the synthesized catalysts were studied using various characterization techniques, namely, XRD, SEM, FTIR, TGA, and N2 adsorption-desorption techniques. The activity of all the catalysts was evaluated at 750°C and gas hourly space velocity (GHSV) of 72000 ml/h/gcat for 9 hours (540 min). The deactivation factor indicating a loss in conversion with time is reported for each catalyst. 10 wt% Ni/ZrO2 showed the highest feed conversion of about 68.8% for methane and 70.2% for carbon dioxide and the highest stability (15.1% deactivation factor and 21% weight loss) for dry reforming of methane to synthesis gas.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dry Reforming of Methane with Mesoporous Ni/ZrO2 Catalyst\",\"authors\":\"Subhan Azeem, R. Aslam, M. Saleem\",\"doi\":\"10.1155/2022/3139696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry reforming of methane has exhibited significant environmental benefits as it utilizes two major greenhouse gases (CO2 and CH4) to produce synthesis gas, a major building block for hydrocarbons. This process has gained industrial attention as catalyst deactivation due to coke deposition being a major hindrance. The present study focuses on the dry reforming of methane over Ni-supported mesoporous zirconia support. Ni metal was loaded over in-house synthesized mesoporous zirconia within the 0–15 wt% range using the wet impregnation method. The physicochemical properties of the synthesized catalysts were studied using various characterization techniques, namely, XRD, SEM, FTIR, TGA, and N2 adsorption-desorption techniques. The activity of all the catalysts was evaluated at 750°C and gas hourly space velocity (GHSV) of 72000 ml/h/gcat for 9 hours (540 min). The deactivation factor indicating a loss in conversion with time is reported for each catalyst. 10 wt% Ni/ZrO2 showed the highest feed conversion of about 68.8% for methane and 70.2% for carbon dioxide and the highest stability (15.1% deactivation factor and 21% weight loss) for dry reforming of methane to synthesis gas.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3139696\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/3139696","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dry Reforming of Methane with Mesoporous Ni/ZrO2 Catalyst
Dry reforming of methane has exhibited significant environmental benefits as it utilizes two major greenhouse gases (CO2 and CH4) to produce synthesis gas, a major building block for hydrocarbons. This process has gained industrial attention as catalyst deactivation due to coke deposition being a major hindrance. The present study focuses on the dry reforming of methane over Ni-supported mesoporous zirconia support. Ni metal was loaded over in-house synthesized mesoporous zirconia within the 0–15 wt% range using the wet impregnation method. The physicochemical properties of the synthesized catalysts were studied using various characterization techniques, namely, XRD, SEM, FTIR, TGA, and N2 adsorption-desorption techniques. The activity of all the catalysts was evaluated at 750°C and gas hourly space velocity (GHSV) of 72000 ml/h/gcat for 9 hours (540 min). The deactivation factor indicating a loss in conversion with time is reported for each catalyst. 10 wt% Ni/ZrO2 showed the highest feed conversion of about 68.8% for methane and 70.2% for carbon dioxide and the highest stability (15.1% deactivation factor and 21% weight loss) for dry reforming of methane to synthesis gas.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.