Neele Meyer, M. Wisshak, E. Edinger, K. Azetsu-Scott, A. Freiwald
{"title":"极地微生物侵蚀模式背景下加拿大北极东部的鱼类多样性","authors":"Neele Meyer, M. Wisshak, E. Edinger, K. Azetsu-Scott, A. Freiwald","doi":"10.33265/polar.v41.8083","DOIUrl":null,"url":null,"abstract":"Studies of marine microbioerosion in polar environments are scarce. They include our recent investigations of bioerosion traces preserved in sessile balanid skeletons from the Arctic Svalbard archipelago and the Antarctic Ross Sea. Here, we present results from a third study site, Frobisher Bay, in the eastern Canadian Arctic, together with a synthesis of our current knowledge of polar bioerosion in both hemispheres. Barnacles from 62 to 94 m water depth in Frobisher Bay were prepared using the cast-embedding technique to enable visualization of microboring traces by scanning electron microscopy. In total, six ichnotaxa of traces produced by organotrophic bioeroders were found. All recorded ichnotaxa were also present in Mosselbukta, Svalbard, and most in the Ross Sea. Frobisher Bay contrasts with Mosselbukta in that it is a siliciclastic-dominated environment and shows a lower ichnodiversity, which may be accounted for by the limited bathymetrical range and a high turbidity and sedimentation rate. We evaluate potential key ichnotaxa for the cold-temperate and polar regions, of which the most suitable are Flagrichnus baiulus and Saccomorpha guttulata, and propose adapted index ichnocoenoses for the interpretation of palaeobathymetry accordingly. Together, the three studies allow us to make provisional considerations about the biogeographical distribution of polar microbioerosion traces reflecting the ecophysiological limits of their makers.","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ichnodiversity in the eastern Canadian Arctic in the context of polar microbioerosion patterns\",\"authors\":\"Neele Meyer, M. Wisshak, E. Edinger, K. Azetsu-Scott, A. Freiwald\",\"doi\":\"10.33265/polar.v41.8083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies of marine microbioerosion in polar environments are scarce. They include our recent investigations of bioerosion traces preserved in sessile balanid skeletons from the Arctic Svalbard archipelago and the Antarctic Ross Sea. Here, we present results from a third study site, Frobisher Bay, in the eastern Canadian Arctic, together with a synthesis of our current knowledge of polar bioerosion in both hemispheres. Barnacles from 62 to 94 m water depth in Frobisher Bay were prepared using the cast-embedding technique to enable visualization of microboring traces by scanning electron microscopy. In total, six ichnotaxa of traces produced by organotrophic bioeroders were found. All recorded ichnotaxa were also present in Mosselbukta, Svalbard, and most in the Ross Sea. Frobisher Bay contrasts with Mosselbukta in that it is a siliciclastic-dominated environment and shows a lower ichnodiversity, which may be accounted for by the limited bathymetrical range and a high turbidity and sedimentation rate. We evaluate potential key ichnotaxa for the cold-temperate and polar regions, of which the most suitable are Flagrichnus baiulus and Saccomorpha guttulata, and propose adapted index ichnocoenoses for the interpretation of palaeobathymetry accordingly. Together, the three studies allow us to make provisional considerations about the biogeographical distribution of polar microbioerosion traces reflecting the ecophysiological limits of their makers.\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v41.8083\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v41.8083","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Ichnodiversity in the eastern Canadian Arctic in the context of polar microbioerosion patterns
Studies of marine microbioerosion in polar environments are scarce. They include our recent investigations of bioerosion traces preserved in sessile balanid skeletons from the Arctic Svalbard archipelago and the Antarctic Ross Sea. Here, we present results from a third study site, Frobisher Bay, in the eastern Canadian Arctic, together with a synthesis of our current knowledge of polar bioerosion in both hemispheres. Barnacles from 62 to 94 m water depth in Frobisher Bay were prepared using the cast-embedding technique to enable visualization of microboring traces by scanning electron microscopy. In total, six ichnotaxa of traces produced by organotrophic bioeroders were found. All recorded ichnotaxa were also present in Mosselbukta, Svalbard, and most in the Ross Sea. Frobisher Bay contrasts with Mosselbukta in that it is a siliciclastic-dominated environment and shows a lower ichnodiversity, which may be accounted for by the limited bathymetrical range and a high turbidity and sedimentation rate. We evaluate potential key ichnotaxa for the cold-temperate and polar regions, of which the most suitable are Flagrichnus baiulus and Saccomorpha guttulata, and propose adapted index ichnocoenoses for the interpretation of palaeobathymetry accordingly. Together, the three studies allow us to make provisional considerations about the biogeographical distribution of polar microbioerosion traces reflecting the ecophysiological limits of their makers.
期刊介绍:
Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public.
Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time.
The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.