同步加速器光源的X射线荧光和X射线吸收光谱绘制脑组织中的金属图谱

Q4 Chemistry Spectroscopy Europe Pub Date : 2022-05-23 DOI:10.1255/sew.2022.a11
A. Hollings, M. Hackett
{"title":"同步加速器光源的X射线荧光和X射线吸收光谱绘制脑组织中的金属图谱","authors":"A. Hollings, M. Hackett","doi":"10.1255/sew.2022.a11","DOIUrl":null,"url":null,"abstract":"The hippocampus (Figure 1A) is a brain region critical to spatial learning and memory. The hippocampal formation contains a highly organised architecture of neurons and neuron–neuron connections, which have been intensively studied by neuroscientists for many decades. In fact, the hippocampus is often referred to as the “Rosetta Stone” of neuroscience, with many believing elucidation of hippocampus circuitry and cell function will unravel the inner workings of the brain. A fasc inat ing fact of the hippocampus is that it appears to be relatively enriched in transition metal ions, particularly Fe, Cu and Zn (Figure 1B). The Zn enrichment was discovered by scientists developing histochemical methods to detect labile metals in brain tissue (e.g., works of Danscher and others),1,2 with work led by Frederickson definitively demonstrating that the characteristic pool of labile metal ions observed in the hippocampus was Zn.2–4 Of great interest, experiments aimed at depleting the labile Zn pool in the hippocampus subsequently revealed behavioural and cognitive deficits in mice,2 consistent with facets of memory loss observed during neurodegenerative diseases of ageing, such as Alzheimer’s disease.5 Consequently, a plethora of lines of research enquiries emerged, aiming to uncover the physiological and chemical pathways through which transition metal ions might be implicated in healthy memory function, and also memory loss. While the classical Timm’s histochemical stain has been invaluable to study labile Zn in the hippocampus (and brain in general), a number of important advances in this field have now been made using direct spectroscopic mapping. Specifically, the provision of intense (bright) and tuneable X-ray sources at synchrotron facilities has revolutionised the biological applications of X-ray techniques, especially X-ray fluorescence spectroscopy (XRF) and X-ray absorption spectroscopy (XAS). Key advantages of XRF are its ability to simultaneously and directly detect (map) elemental distribution at cellular resolution (and sometimes sub-cellular resolution), in situ. The direct in situ detection capabilities of XRF are","PeriodicalId":35851,"journal":{"name":"Spectroscopy Europe","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping metals in brain tissue with X-ray fluorescence and X-ray absorption spectroscopy at synchrotron light sources\",\"authors\":\"A. Hollings, M. Hackett\",\"doi\":\"10.1255/sew.2022.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hippocampus (Figure 1A) is a brain region critical to spatial learning and memory. The hippocampal formation contains a highly organised architecture of neurons and neuron–neuron connections, which have been intensively studied by neuroscientists for many decades. In fact, the hippocampus is often referred to as the “Rosetta Stone” of neuroscience, with many believing elucidation of hippocampus circuitry and cell function will unravel the inner workings of the brain. A fasc inat ing fact of the hippocampus is that it appears to be relatively enriched in transition metal ions, particularly Fe, Cu and Zn (Figure 1B). The Zn enrichment was discovered by scientists developing histochemical methods to detect labile metals in brain tissue (e.g., works of Danscher and others),1,2 with work led by Frederickson definitively demonstrating that the characteristic pool of labile metal ions observed in the hippocampus was Zn.2–4 Of great interest, experiments aimed at depleting the labile Zn pool in the hippocampus subsequently revealed behavioural and cognitive deficits in mice,2 consistent with facets of memory loss observed during neurodegenerative diseases of ageing, such as Alzheimer’s disease.5 Consequently, a plethora of lines of research enquiries emerged, aiming to uncover the physiological and chemical pathways through which transition metal ions might be implicated in healthy memory function, and also memory loss. While the classical Timm’s histochemical stain has been invaluable to study labile Zn in the hippocampus (and brain in general), a number of important advances in this field have now been made using direct spectroscopic mapping. Specifically, the provision of intense (bright) and tuneable X-ray sources at synchrotron facilities has revolutionised the biological applications of X-ray techniques, especially X-ray fluorescence spectroscopy (XRF) and X-ray absorption spectroscopy (XAS). Key advantages of XRF are its ability to simultaneously and directly detect (map) elemental distribution at cellular resolution (and sometimes sub-cellular resolution), in situ. The direct in situ detection capabilities of XRF are\",\"PeriodicalId\":35851,\"journal\":{\"name\":\"Spectroscopy Europe\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/sew.2022.a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/sew.2022.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1

摘要

海马体(图1A)是大脑中对空间学习和记忆至关重要的区域。海马结构包含高度组织化的神经元结构和神经元-神经元连接,几十年来神经科学家一直在对其进行深入研究。事实上,海马体通常被称为神经科学的“罗塞塔石碑”,许多人认为,对海马体电路和细胞功能的阐明将揭示大脑的内部运作。海马体的一个重要事实是,它似乎相对富含过渡金属离子,特别是Fe、Cu和Zn(图1B)。锌富集是由开发组织化学方法来检测脑组织中不稳定金属的科学家发现的(例如,Danscher等人的工作),1,2 Frederickson领导的工作明确证明了在海马中观察到的不稳定金属离子的特征库是锌。2-4非常感兴趣的是,旨在耗尽海马体中不稳定的锌库的实验随后揭示了小鼠的行为和认知缺陷,2这与在衰老的神经退行性疾病(如阿尔茨海默病)中观察到的记忆丧失的各个方面一致。5因此,出现了大量的研究问题,旨在揭示过渡金属离子可能与健康记忆功能和记忆丧失有关的生理和化学途径。虽然经典的Timm组织化学染色对研究海马体(和整个大脑)中不稳定的锌具有非常宝贵的价值,但现在已经使用直接光谱图谱在该领域取得了许多重要进展。具体而言,在同步加速器设施中提供强(明亮)和可调谐的X射线源彻底改变了X射线技术的生物学应用,尤其是X射线荧光光谱(XRF)和X射线吸收光谱(XAS)。XRF的主要优点是它能够以细胞分辨率(有时是亚细胞分辨率)原位同时直接检测(绘制)元素分布。XRF的直接原位检测能力是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping metals in brain tissue with X-ray fluorescence and X-ray absorption spectroscopy at synchrotron light sources
The hippocampus (Figure 1A) is a brain region critical to spatial learning and memory. The hippocampal formation contains a highly organised architecture of neurons and neuron–neuron connections, which have been intensively studied by neuroscientists for many decades. In fact, the hippocampus is often referred to as the “Rosetta Stone” of neuroscience, with many believing elucidation of hippocampus circuitry and cell function will unravel the inner workings of the brain. A fasc inat ing fact of the hippocampus is that it appears to be relatively enriched in transition metal ions, particularly Fe, Cu and Zn (Figure 1B). The Zn enrichment was discovered by scientists developing histochemical methods to detect labile metals in brain tissue (e.g., works of Danscher and others),1,2 with work led by Frederickson definitively demonstrating that the characteristic pool of labile metal ions observed in the hippocampus was Zn.2–4 Of great interest, experiments aimed at depleting the labile Zn pool in the hippocampus subsequently revealed behavioural and cognitive deficits in mice,2 consistent with facets of memory loss observed during neurodegenerative diseases of ageing, such as Alzheimer’s disease.5 Consequently, a plethora of lines of research enquiries emerged, aiming to uncover the physiological and chemical pathways through which transition metal ions might be implicated in healthy memory function, and also memory loss. While the classical Timm’s histochemical stain has been invaluable to study labile Zn in the hippocampus (and brain in general), a number of important advances in this field have now been made using direct spectroscopic mapping. Specifically, the provision of intense (bright) and tuneable X-ray sources at synchrotron facilities has revolutionised the biological applications of X-ray techniques, especially X-ray fluorescence spectroscopy (XRF) and X-ray absorption spectroscopy (XAS). Key advantages of XRF are its ability to simultaneously and directly detect (map) elemental distribution at cellular resolution (and sometimes sub-cellular resolution), in situ. The direct in situ detection capabilities of XRF are
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spectroscopy Europe
Spectroscopy Europe Chemistry-Analytical Chemistry
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: Spectroscopy Europe is the only European publication dedicated to all areas of Spectroscopy. It publishes a wide range of articles on the latest developments, interesting and important applications, new techniques and the latest development in the field. This controlled-circulation magazine is available free-of-charge to qualifying individuals engaged in spectroscopy within Europe. Includes regular news, a comprehensive diary of events worldwide, product introductions, meeting reports, book reviews and regular columns on chemometrics, data handling, process spectroscopy and reference materials.
期刊最新文献
Danish geology icon Arne Noe-Nygaard picks up on an 800 years old sampling and invents the Replication Experiment: PAT in disguise Life and death of a data set: a forensic investigation Unsubstantiated complacency re. the “assay exchange” paradigm: sampling uncertainties with hidden economic consequences John Hollerton: a life in industrial analytical spectroscopy, part 2 Framing the Theory of Sampling in risk assessment: a compelling perspective for the future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1