{"title":"教育测试中的题库质量控制:变化点模型、复合风险和顺序检测","authors":"Yunxiao Chen, Yi-Hsuan Lee, Xiaoou Li","doi":"10.3102/10769986211059085","DOIUrl":null,"url":null,"abstract":"In standardized educational testing, test items are reused in multiple test administrations. To ensure the validity of test scores, the psychometric properties of items should remain unchanged over time. In this article, we consider the sequential monitoring of test items, in particular, the detection of abrupt changes to their psychometric properties, where a change can be caused by, for example, leakage of the item or change of the corresponding curriculum. We propose a statistical framework for the detection of abrupt changes in individual items. This framework consists of (1) a multistream Bayesian change point model describing sequential changes in items, (2) a compound risk function quantifying the risk in sequential decisions, and (3) sequential decision rules that control the compound risk. Throughout the sequential decision process, the proposed decision rule balances the trade-off between two sources of errors, the false detection of prechange items, and the nondetection of postchange items. An item-specific monitoring statistic is proposed based on an item response theory model that eliminates the confounding from the examinee population which changes over time. Sequential decision rules and their theoretical properties are developed under two settings: the oracle setting where the Bayesian change point model is completely known and a more realistic setting where some parameters of the model are unknown. Simulation studies are conducted under settings that mimic real operational tests.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"47 1","pages":"322 - 352"},"PeriodicalIF":1.9000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Item Pool Quality Control in Educational Testing: Change Point Model, Compound Risk, and Sequential Detection\",\"authors\":\"Yunxiao Chen, Yi-Hsuan Lee, Xiaoou Li\",\"doi\":\"10.3102/10769986211059085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In standardized educational testing, test items are reused in multiple test administrations. To ensure the validity of test scores, the psychometric properties of items should remain unchanged over time. In this article, we consider the sequential monitoring of test items, in particular, the detection of abrupt changes to their psychometric properties, where a change can be caused by, for example, leakage of the item or change of the corresponding curriculum. We propose a statistical framework for the detection of abrupt changes in individual items. This framework consists of (1) a multistream Bayesian change point model describing sequential changes in items, (2) a compound risk function quantifying the risk in sequential decisions, and (3) sequential decision rules that control the compound risk. Throughout the sequential decision process, the proposed decision rule balances the trade-off between two sources of errors, the false detection of prechange items, and the nondetection of postchange items. An item-specific monitoring statistic is proposed based on an item response theory model that eliminates the confounding from the examinee population which changes over time. Sequential decision rules and their theoretical properties are developed under two settings: the oracle setting where the Bayesian change point model is completely known and a more realistic setting where some parameters of the model are unknown. Simulation studies are conducted under settings that mimic real operational tests.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"47 1\",\"pages\":\"322 - 352\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986211059085\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986211059085","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Item Pool Quality Control in Educational Testing: Change Point Model, Compound Risk, and Sequential Detection
In standardized educational testing, test items are reused in multiple test administrations. To ensure the validity of test scores, the psychometric properties of items should remain unchanged over time. In this article, we consider the sequential monitoring of test items, in particular, the detection of abrupt changes to their psychometric properties, where a change can be caused by, for example, leakage of the item or change of the corresponding curriculum. We propose a statistical framework for the detection of abrupt changes in individual items. This framework consists of (1) a multistream Bayesian change point model describing sequential changes in items, (2) a compound risk function quantifying the risk in sequential decisions, and (3) sequential decision rules that control the compound risk. Throughout the sequential decision process, the proposed decision rule balances the trade-off between two sources of errors, the false detection of prechange items, and the nondetection of postchange items. An item-specific monitoring statistic is proposed based on an item response theory model that eliminates the confounding from the examinee population which changes over time. Sequential decision rules and their theoretical properties are developed under two settings: the oracle setting where the Bayesian change point model is completely known and a more realistic setting where some parameters of the model are unknown. Simulation studies are conducted under settings that mimic real operational tests.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.