{"title":"应用ABAQUS仿真软件对高层路面断裂失效和疲劳开裂的调查与分析","authors":"Seyed Masoud Hadian","doi":"10.29328/JOURNAL.ACEE.1001015","DOIUrl":null,"url":null,"abstract":"Assuming that the road infrastructure has been implemented in accordance with specifications and standards, poor adhesion between the two layers of asphalt mix can be a significant cause of pavement problems. The general problem observed with the weak adhesion between the layers is the slip failure. Slipping disruption in areas where transport acceleration increases, in areas where acceleration decreases or may occur in bumps. One of the criteria and a test method for measuring adhesion resistance between the hot mix asphalt layers is needed to improve the surface finish. The main objective of this study is to determine the effect of reducing the coefficient of friction between asphalt layers in the displacement of asphaltic layers. Because performing experimental experiments in the country is a deterrent to this goal, the use of analytical and numerical methods has been shown to play an important role in conducting studies. Therefore, in this paper, using vehicle simulation in ABAQUS software and analyzes, it has been found that decreasing the coefficient of friction (adhesion reduction) increases the interlayer deformation, which causes the surface of the pavement to fail. Three different thicknesses for asphalt cladding, including 4, 6, and 7 centimeters, and three different thicknesses for roller concrete layers of 18, 20 and 22 centimeters are used. Modeling and analysis of pavements with finite element method has been performed and the depth of the asphalt and tensile strain slope is calculated at the maximum level. The results show that the type of asphalt mix has a high impact on the amount of sloping and tensile strain at the maximum level. So that under different conditions it is estimated to be about 2-3 times in the amount of rotation at the surface. Also, the amount of groove and strain in the middle of the procedure is increased by a thickness of 11% the thickness of the roller concrete thickness has not changed, but the surface strain has been reduced by 9%.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation and analysis of fracture failure and fatigue cracking in High-rise pavement using simulation software of ABAQUS\",\"authors\":\"Seyed Masoud Hadian\",\"doi\":\"10.29328/JOURNAL.ACEE.1001015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming that the road infrastructure has been implemented in accordance with specifications and standards, poor adhesion between the two layers of asphalt mix can be a significant cause of pavement problems. The general problem observed with the weak adhesion between the layers is the slip failure. Slipping disruption in areas where transport acceleration increases, in areas where acceleration decreases or may occur in bumps. One of the criteria and a test method for measuring adhesion resistance between the hot mix asphalt layers is needed to improve the surface finish. The main objective of this study is to determine the effect of reducing the coefficient of friction between asphalt layers in the displacement of asphaltic layers. Because performing experimental experiments in the country is a deterrent to this goal, the use of analytical and numerical methods has been shown to play an important role in conducting studies. Therefore, in this paper, using vehicle simulation in ABAQUS software and analyzes, it has been found that decreasing the coefficient of friction (adhesion reduction) increases the interlayer deformation, which causes the surface of the pavement to fail. Three different thicknesses for asphalt cladding, including 4, 6, and 7 centimeters, and three different thicknesses for roller concrete layers of 18, 20 and 22 centimeters are used. Modeling and analysis of pavements with finite element method has been performed and the depth of the asphalt and tensile strain slope is calculated at the maximum level. The results show that the type of asphalt mix has a high impact on the amount of sloping and tensile strain at the maximum level. So that under different conditions it is estimated to be about 2-3 times in the amount of rotation at the surface. Also, the amount of groove and strain in the middle of the procedure is increased by a thickness of 11% the thickness of the roller concrete thickness has not changed, but the surface strain has been reduced by 9%.\",\"PeriodicalId\":72214,\"journal\":{\"name\":\"Annals of civil and environmental engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of civil and environmental engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29328/JOURNAL.ACEE.1001015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of civil and environmental engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29328/JOURNAL.ACEE.1001015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation and analysis of fracture failure and fatigue cracking in High-rise pavement using simulation software of ABAQUS
Assuming that the road infrastructure has been implemented in accordance with specifications and standards, poor adhesion between the two layers of asphalt mix can be a significant cause of pavement problems. The general problem observed with the weak adhesion between the layers is the slip failure. Slipping disruption in areas where transport acceleration increases, in areas where acceleration decreases or may occur in bumps. One of the criteria and a test method for measuring adhesion resistance between the hot mix asphalt layers is needed to improve the surface finish. The main objective of this study is to determine the effect of reducing the coefficient of friction between asphalt layers in the displacement of asphaltic layers. Because performing experimental experiments in the country is a deterrent to this goal, the use of analytical and numerical methods has been shown to play an important role in conducting studies. Therefore, in this paper, using vehicle simulation in ABAQUS software and analyzes, it has been found that decreasing the coefficient of friction (adhesion reduction) increases the interlayer deformation, which causes the surface of the pavement to fail. Three different thicknesses for asphalt cladding, including 4, 6, and 7 centimeters, and three different thicknesses for roller concrete layers of 18, 20 and 22 centimeters are used. Modeling and analysis of pavements with finite element method has been performed and the depth of the asphalt and tensile strain slope is calculated at the maximum level. The results show that the type of asphalt mix has a high impact on the amount of sloping and tensile strain at the maximum level. So that under different conditions it is estimated to be about 2-3 times in the amount of rotation at the surface. Also, the amount of groove and strain in the middle of the procedure is increased by a thickness of 11% the thickness of the roller concrete thickness has not changed, but the surface strain has been reduced by 9%.