具有块缺失数据的高维广义线性模型的变量选择

Pub Date : 2023-01-23 DOI:10.1111/sjos.12632
Yifan He, Yang Feng, Xinyuan Song
{"title":"具有块缺失数据的高维广义线性模型的变量选择","authors":"Yifan He, Yang Feng, Xinyuan Song","doi":"10.1111/sjos.12632","DOIUrl":null,"url":null,"abstract":"In modern scientific research, multiblock missing data emerges with synthesizing information across multiple studies. However, existing imputation methods for handling block‐wise missing data either focus on the single‐block missing pattern or heavily rely on the model structure. In this study, we propose a single regression‐based imputation algorithm for multiblock missing data. First, we conduct a sparse precision matrix estimation based on the structure of block‐wise missing data. Second, we impute the missing blocks with their means conditional on the observed blocks. Theoretical results about variable selection and estimation consistency are established in the context of a generalized linear model. Moreover, simulation studies show that compared with existing methods, the proposed imputation procedure is robust to various missing mechanisms because of the good properties of regression imputation. An application to Alzheimer's Disease Neuroimaging Initiative data also confirms the superiority of our proposed method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable selection for high‐dimensional generalized linear model with block‐missing data\",\"authors\":\"Yifan He, Yang Feng, Xinyuan Song\",\"doi\":\"10.1111/sjos.12632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern scientific research, multiblock missing data emerges with synthesizing information across multiple studies. However, existing imputation methods for handling block‐wise missing data either focus on the single‐block missing pattern or heavily rely on the model structure. In this study, we propose a single regression‐based imputation algorithm for multiblock missing data. First, we conduct a sparse precision matrix estimation based on the structure of block‐wise missing data. Second, we impute the missing blocks with their means conditional on the observed blocks. Theoretical results about variable selection and estimation consistency are established in the context of a generalized linear model. Moreover, simulation studies show that compared with existing methods, the proposed imputation procedure is robust to various missing mechanisms because of the good properties of regression imputation. An application to Alzheimer's Disease Neuroimaging Initiative data also confirms the superiority of our proposed method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代科学研究中,多块缺失数据是通过综合多个研究中的信息而出现的。然而,现有的处理逐块缺失数据的插补方法要么侧重于单块缺失模式,要么严重依赖于模型结构。在本研究中,我们提出了一种基于单回归的多块缺失数据插补算法。首先,我们基于逐块缺失数据的结构进行稀疏精度矩阵估计。其次,我们以观测到的块为条件,用它们的平均值来估算缺失块。在广义线性模型的背景下,建立了变量选择和估计一致性的理论结果。此外,模拟研究表明,与现有方法相比,由于回归插补的良好特性,所提出的插补程序对各种缺失机制都是稳健的。阿尔茨海默病神经成像倡议数据的应用也证实了我们提出的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Variable selection for high‐dimensional generalized linear model with block‐missing data
In modern scientific research, multiblock missing data emerges with synthesizing information across multiple studies. However, existing imputation methods for handling block‐wise missing data either focus on the single‐block missing pattern or heavily rely on the model structure. In this study, we propose a single regression‐based imputation algorithm for multiblock missing data. First, we conduct a sparse precision matrix estimation based on the structure of block‐wise missing data. Second, we impute the missing blocks with their means conditional on the observed blocks. Theoretical results about variable selection and estimation consistency are established in the context of a generalized linear model. Moreover, simulation studies show that compared with existing methods, the proposed imputation procedure is robust to various missing mechanisms because of the good properties of regression imputation. An application to Alzheimer's Disease Neuroimaging Initiative data also confirms the superiority of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1