Zixu Ji, N. Liao, Ya-wei Li, Tianbin Zhu, M. Nath, Zhihua Yang
{"title":"机械合金化和放电等离子烧结制备zr7 / 8ti1 / 8b2 - 20vol % SiC复合材料的显微组织和抗热震性能","authors":"Zixu Ji, N. Liao, Ya-wei Li, Tianbin Zhu, M. Nath, Zhihua Yang","doi":"10.1080/0371750X.2023.2189621","DOIUrl":null,"url":null,"abstract":"ZrB2-based composites are promising ultra-high temperature materials, nonetheless their poor damage tolerance and low oxidation resistance hinder their practical applications. In the present work, Zr1–xTixB2-20 vol% SiC composites were prepared based on the mechanical alloying (MA) method and spark plasma sintering (SPS) technique. The results showed that solid solution of ZrTiB4 can be obtained by taking nano-sized ZrB2-TiB2 powders from the MA process. The Zr7/8Ti1/8B2-20 vol% SiC composites presented higher fracture toughness due to various toughening mechanisms, such as ‘crack deflection’ and ‘pull out’ induced by the finer solid solution particles and nano-sized graphite. Consequently, Zr7/8Ti1/8B2-20 vol% SiC composites possessed a residual strength of 180 MPa after thermal shock test with a temperature difference of 1000°C, while the conventional ZrB2-20 vol% SiC composites only remained at 81.4 MPa. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":"82 1","pages":"122 - 128"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Thermal Shock Resistance of Zr7/8Ti1/8B2-20 vol% SiC Composites Synthesized by Mechanical Alloying and Spark Plasma Sintering\",\"authors\":\"Zixu Ji, N. Liao, Ya-wei Li, Tianbin Zhu, M. Nath, Zhihua Yang\",\"doi\":\"10.1080/0371750X.2023.2189621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ZrB2-based composites are promising ultra-high temperature materials, nonetheless their poor damage tolerance and low oxidation resistance hinder their practical applications. In the present work, Zr1–xTixB2-20 vol% SiC composites were prepared based on the mechanical alloying (MA) method and spark plasma sintering (SPS) technique. The results showed that solid solution of ZrTiB4 can be obtained by taking nano-sized ZrB2-TiB2 powders from the MA process. The Zr7/8Ti1/8B2-20 vol% SiC composites presented higher fracture toughness due to various toughening mechanisms, such as ‘crack deflection’ and ‘pull out’ induced by the finer solid solution particles and nano-sized graphite. Consequently, Zr7/8Ti1/8B2-20 vol% SiC composites possessed a residual strength of 180 MPa after thermal shock test with a temperature difference of 1000°C, while the conventional ZrB2-20 vol% SiC composites only remained at 81.4 MPa. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23233,\"journal\":{\"name\":\"Transactions of the Indian Ceramic Society\",\"volume\":\"82 1\",\"pages\":\"122 - 128\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Indian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/0371750X.2023.2189621\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2023.2189621","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Microstructure and Thermal Shock Resistance of Zr7/8Ti1/8B2-20 vol% SiC Composites Synthesized by Mechanical Alloying and Spark Plasma Sintering
ZrB2-based composites are promising ultra-high temperature materials, nonetheless their poor damage tolerance and low oxidation resistance hinder their practical applications. In the present work, Zr1–xTixB2-20 vol% SiC composites were prepared based on the mechanical alloying (MA) method and spark plasma sintering (SPS) technique. The results showed that solid solution of ZrTiB4 can be obtained by taking nano-sized ZrB2-TiB2 powders from the MA process. The Zr7/8Ti1/8B2-20 vol% SiC composites presented higher fracture toughness due to various toughening mechanisms, such as ‘crack deflection’ and ‘pull out’ induced by the finer solid solution particles and nano-sized graphite. Consequently, Zr7/8Ti1/8B2-20 vol% SiC composites possessed a residual strength of 180 MPa after thermal shock test with a temperature difference of 1000°C, while the conventional ZrB2-20 vol% SiC composites only remained at 81.4 MPa. GRAPHICAL ABSTRACT
期刊介绍:
Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family.
The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.