{"title":"水泥复合材料的应变率敏感性:来自现场金属纳米夹杂物的见解","authors":"Navid Tourani, Kwesi Sagoe-Crentsil, Wenhui Duan","doi":"10.1016/j.cemconres.2023.107210","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the effects of Field's metal (FM) nanoparticles (NPs) on the mechanical behaviour of cement paste under quasi-static (QS) and dynamic strain rates. We found the highest mechanical improvement under QS loading with 1 % FM dosage, beyond which boosting the dosage diminished its contribution to the mechanical performance. Conversely, under dynamic loadings, boosting the dosage from 1 % to 4 % FM significantly and progressively enhanced the overall mechanical performance. These results indicated that the mechanical impacts that ensue from the microstructural modification effects of FM differ with dosage and strain rates. Under QS loading, the pore-refining effect of the NPs was predominant, whereas, under dynamic loadings, the reinforcing effect of the NPs was the primary factor. Furthermore, by comparing the effects of FM and nanosilica NPs, our findings underscored the pronounced effect of the nanomaterial physical and mechanical properties on the strain-rate sensitivity of cementitious nanocomposites.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"171 ","pages":"Article 107210"},"PeriodicalIF":10.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008884623001242/pdfft?md5=1aae457972723d1b6d2c9f32570f2aee&pid=1-s2.0-S0008884623001242-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strain-rate sensitivity of cement composites: Insights from field's metal nano-inclusions\",\"authors\":\"Navid Tourani, Kwesi Sagoe-Crentsil, Wenhui Duan\",\"doi\":\"10.1016/j.cemconres.2023.107210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigated the effects of Field's metal (FM) nanoparticles (NPs) on the mechanical behaviour of cement paste under quasi-static (QS) and dynamic strain rates. We found the highest mechanical improvement under QS loading with 1 % FM dosage, beyond which boosting the dosage diminished its contribution to the mechanical performance. Conversely, under dynamic loadings, boosting the dosage from 1 % to 4 % FM significantly and progressively enhanced the overall mechanical performance. These results indicated that the mechanical impacts that ensue from the microstructural modification effects of FM differ with dosage and strain rates. Under QS loading, the pore-refining effect of the NPs was predominant, whereas, under dynamic loadings, the reinforcing effect of the NPs was the primary factor. Furthermore, by comparing the effects of FM and nanosilica NPs, our findings underscored the pronounced effect of the nanomaterial physical and mechanical properties on the strain-rate sensitivity of cementitious nanocomposites.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"171 \",\"pages\":\"Article 107210\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0008884623001242/pdfft?md5=1aae457972723d1b6d2c9f32570f2aee&pid=1-s2.0-S0008884623001242-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884623001242\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884623001242","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Strain-rate sensitivity of cement composites: Insights from field's metal nano-inclusions
In this study, we investigated the effects of Field's metal (FM) nanoparticles (NPs) on the mechanical behaviour of cement paste under quasi-static (QS) and dynamic strain rates. We found the highest mechanical improvement under QS loading with 1 % FM dosage, beyond which boosting the dosage diminished its contribution to the mechanical performance. Conversely, under dynamic loadings, boosting the dosage from 1 % to 4 % FM significantly and progressively enhanced the overall mechanical performance. These results indicated that the mechanical impacts that ensue from the microstructural modification effects of FM differ with dosage and strain rates. Under QS loading, the pore-refining effect of the NPs was predominant, whereas, under dynamic loadings, the reinforcing effect of the NPs was the primary factor. Furthermore, by comparing the effects of FM and nanosilica NPs, our findings underscored the pronounced effect of the nanomaterial physical and mechanical properties on the strain-rate sensitivity of cementitious nanocomposites.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.