低成本iot数据采集平台的开发

Daniel da Silva, Arthur Breno Rocha Mariano, A. B. O. D. Sousa
{"title":"低成本iot数据采集平台的开发","authors":"Daniel da Silva, Arthur Breno Rocha Mariano, A. B. O. D. Sousa","doi":"10.13083/reveng.v30i1.13335","DOIUrl":null,"url":null,"abstract":"Precision agriculture in the Internet of Things (IoT) integrates different technologies able to raise crop productivity, optimize resource efficiency, and accelerate decision making. However, the adoption of this technology is usually costly, affecting the acquisition by the farmers. Thus, the objective of this work was to develop and evaluate low-cost hardware to obtain data in a hydroponic system via IoT. The experiment was conducted at the Pici Campus of the Federal University of Ceará and split into three distinct stages. Firstly, the DS18B20 temperature sensors were calibrated in water, using the KR380 infrared thermometer as a comparison method. For the second step, when the hydroponic system was installed, the water temperature was monitored in the channel and not in the solution reservoir. In this same phase, the quality of data sending and receiving was investigated. In the third step, the sensory data were analyzed with those obtained by the local Meteorological Station. The calibration results revealed that the DS18B20 sensor has reasonable accuracy and excellent agreement and reliability between data. As for receiving and storing, only 6% of the total data was lost.","PeriodicalId":33461,"journal":{"name":"Engenharia na Agricultura","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a low-cost iot platform for data collection\",\"authors\":\"Daniel da Silva, Arthur Breno Rocha Mariano, A. B. O. D. Sousa\",\"doi\":\"10.13083/reveng.v30i1.13335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision agriculture in the Internet of Things (IoT) integrates different technologies able to raise crop productivity, optimize resource efficiency, and accelerate decision making. However, the adoption of this technology is usually costly, affecting the acquisition by the farmers. Thus, the objective of this work was to develop and evaluate low-cost hardware to obtain data in a hydroponic system via IoT. The experiment was conducted at the Pici Campus of the Federal University of Ceará and split into three distinct stages. Firstly, the DS18B20 temperature sensors were calibrated in water, using the KR380 infrared thermometer as a comparison method. For the second step, when the hydroponic system was installed, the water temperature was monitored in the channel and not in the solution reservoir. In this same phase, the quality of data sending and receiving was investigated. In the third step, the sensory data were analyzed with those obtained by the local Meteorological Station. The calibration results revealed that the DS18B20 sensor has reasonable accuracy and excellent agreement and reliability between data. As for receiving and storing, only 6% of the total data was lost.\",\"PeriodicalId\":33461,\"journal\":{\"name\":\"Engenharia na Agricultura\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engenharia na Agricultura\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13083/reveng.v30i1.13335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia na Agricultura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13083/reveng.v30i1.13335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)中的精准农业整合了能够提高作物生产力、优化资源效率和加速决策的不同技术。然而,这种技术的采用通常是昂贵的,影响了农民的获取。因此,这项工作的目标是开发和评估通过物联网在水培系统中获取数据的低成本硬件。实验在塞埃尔联邦大学Pici校区进行,分为三个不同的阶段。首先,在水中对DS18B20温度传感器进行了标定,采用KR380红外测温仪作为对比方法。第二步,安装水培系统时,监测通道内的水温,而不是溶液池中的水温。在同一阶段,对数据发送和接收的质量进行了研究。第三步,将遥感数据与当地气象站实测数据进行对比分析。标定结果表明,DS18B20传感器具有合理的精度和良好的数据一致性和可靠性。在接收和存储方面,只有6%的数据丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a low-cost iot platform for data collection
Precision agriculture in the Internet of Things (IoT) integrates different technologies able to raise crop productivity, optimize resource efficiency, and accelerate decision making. However, the adoption of this technology is usually costly, affecting the acquisition by the farmers. Thus, the objective of this work was to develop and evaluate low-cost hardware to obtain data in a hydroponic system via IoT. The experiment was conducted at the Pici Campus of the Federal University of Ceará and split into three distinct stages. Firstly, the DS18B20 temperature sensors were calibrated in water, using the KR380 infrared thermometer as a comparison method. For the second step, when the hydroponic system was installed, the water temperature was monitored in the channel and not in the solution reservoir. In this same phase, the quality of data sending and receiving was investigated. In the third step, the sensory data were analyzed with those obtained by the local Meteorological Station. The calibration results revealed that the DS18B20 sensor has reasonable accuracy and excellent agreement and reliability between data. As for receiving and storing, only 6% of the total data was lost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
35
审稿时长
24 weeks
期刊最新文献
Obtaining and physicochemical characterization of yacon derivatives Disease detection in citrus crops using optical and thermal remote sensing: a literature review Spatial variability of soil physical attributes under conservation management systems for sugarcane cultivation Esp8266 module use in animal production: a review Development and validation of cfd model for compost barn with artificial ventilation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1