磁同心管机器人:介绍与分析

IF 7.5 1区 计算机科学 Q1 ROBOTICS International Journal of Robotics Research Pub Date : 2022-04-01 DOI:10.1177/02783649211071113
Quentin Peyron, Q. Boehler, P. Rougeot, Pierre Roux, B. Nelson, N. Andreff, K. Rabenorosoa, P. Renaud
{"title":"磁同心管机器人:介绍与分析","authors":"Quentin Peyron, Q. Boehler, P. Rougeot, Pierre Roux, B. Nelson, N. Andreff, K. Rabenorosoa, P. Renaud","doi":"10.1177/02783649211071113","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new type of continuum robot, referred to as a magnetic concentric tube robot (M-CTR), for performing minimally invasive surgery in narrow and difficult-to-access areas. The robot combines concentric tubes and magnetic actuation to benefit from the ‘follow the leader’ behaviour, the dexterity and stability of existing robots, while targeting millimetre-sized external diameters. These three kinematic properties are assessed through numerical and experimental studies performed on a prototype of a M-CTR. They are performed with general forward and inverse kineto-static models of the robot, continuation and bifurcation analysis, and a specific experimental setup. The prototype presents unique capabilities in terms of deployment and active stability management, while its dexterity in terms of tip orientability is also among the best reported for other robots at its scale.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Magnetic concentric tube robots: Introduction and analysis\",\"authors\":\"Quentin Peyron, Q. Boehler, P. Rougeot, Pierre Roux, B. Nelson, N. Andreff, K. Rabenorosoa, P. Renaud\",\"doi\":\"10.1177/02783649211071113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new type of continuum robot, referred to as a magnetic concentric tube robot (M-CTR), for performing minimally invasive surgery in narrow and difficult-to-access areas. The robot combines concentric tubes and magnetic actuation to benefit from the ‘follow the leader’ behaviour, the dexterity and stability of existing robots, while targeting millimetre-sized external diameters. These three kinematic properties are assessed through numerical and experimental studies performed on a prototype of a M-CTR. They are performed with general forward and inverse kineto-static models of the robot, continuation and bifurcation analysis, and a specific experimental setup. The prototype presents unique capabilities in terms of deployment and active stability management, while its dexterity in terms of tip orientability is also among the best reported for other robots at its scale.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649211071113\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211071113","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一种新型的连续体机器人,称为磁性同心管机器人(M-CTR),用于在狭窄且难以进入的区域进行微创手术。该机器人结合了同心管和磁性驱动,以受益于现有机器人的“跟随领导者”行为、灵活性和稳定性,同时瞄准毫米大小的外径。这三种运动学特性是通过对M-CTR原型进行的数值和实验研究来评估的。它们是通过机器人的一般正运动学和逆运动学静态模型、连续性和分岔分析以及特定的实验装置进行的。该原型在部署和主动稳定性管理方面表现出独特的能力,而其尖端可定向性方面的灵活性也在同类规模的其他机器人中名列前茅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic concentric tube robots: Introduction and analysis
In this paper, we propose a new type of continuum robot, referred to as a magnetic concentric tube robot (M-CTR), for performing minimally invasive surgery in narrow and difficult-to-access areas. The robot combines concentric tubes and magnetic actuation to benefit from the ‘follow the leader’ behaviour, the dexterity and stability of existing robots, while targeting millimetre-sized external diameters. These three kinematic properties are assessed through numerical and experimental studies performed on a prototype of a M-CTR. They are performed with general forward and inverse kineto-static models of the robot, continuation and bifurcation analysis, and a specific experimental setup. The prototype presents unique capabilities in terms of deployment and active stability management, while its dexterity in terms of tip orientability is also among the best reported for other robots at its scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robotics Research
International Journal of Robotics Research 工程技术-机器人学
CiteScore
22.20
自引率
0.00%
发文量
34
审稿时长
6-12 weeks
期刊介绍: The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research. IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics. The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time. In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.
期刊最新文献
Decentralized state estimation: An approach using pseudomeasurements and preintegration. Linear electrostatic actuators with Moiré-effect optical proprioceptive sensing and electroadhesive braking Under-canopy dataset for advancing simultaneous localization and mapping in agricultural robotics Multilevel motion planning: A fiber bundle formulation TRansPose: Large-scale multispectral dataset for transparent object
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1