绘制用于骨组织工程应用的快速工具制造的锌支架的结构特性

IF 3.4 4区 工程技术 Q1 ENGINEERING, MECHANICAL Rapid Prototyping Journal Pub Date : 2023-08-14 DOI:10.1108/rpj-03-2023-0077
A. Kansal, A. Dvivedi, P. Kumar
{"title":"绘制用于骨组织工程应用的快速工具制造的锌支架的结构特性","authors":"A. Kansal, A. Dvivedi, P. Kumar","doi":"10.1108/rpj-03-2023-0077","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study to investigate the organized porous network zinc (OPNZ) scaffolds. Their mechanical characteristics, surface roughness and fracture mechanism were assessed in relation to their structural properties. The prospects of fused deposition modeling (FDM) for printing metal scaffolds via rapid tooling have also been studied.\n\n\nDesign/methodology/approach\nZn scaffolds with different pore and strut sizes were manufactured via the rapid tooling method. This method is a multistep process that begins with the 3D printing of a polymer template. Later, a paraffin template was obtained from the prepared polymer template. Finally, this paraffin template was used to fabricate the Zn scaffold using microwave sintering. The characterization of prepared Zn samples involved structural characterization, microstructural study, surface roughness testing and compression testing. Moreover, based on the Gibson–Ashby model analysis, the model equations’ constant values were evaluated, which can help in predicting the mechanical properties of Zn scaffolds.\n\n\nFindings\nThe scanning electron microscopy study confirmed that the fabricated sample pores were open and interconnected. The X-ray diffraction analysis revealed that the Zn scaffold contained hexagonal closed-packed Zn peaks related to the a-Zn phase, validating that scaffolds were free from contamination and impurity. The range for ultimate compressive strength, compressive modulus and plateau stresses for Zn samples were found to be 6.75–39 MPa, 0.14–3.51 GPa and 1.85–12.6 MPa by adjusting their porosity, which are comparable with the cancellous bones. The average roughness value for the Zn scaffolds was found to be 1.86 µm.\n\n\nOriginality/value\nThis research work can widen the scope for extrusion-based FDM printers for fabricating biocompatible and biodegradable metal Zn scaffolds. This study also revealed the effects of scaffold structural properties like porosity, pore and strut size effect on their mechanical characteristics in view of tissue engineering applications.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the structural properties of zinc scaffold fabricated via rapid tooling for bone tissue engineering applications\",\"authors\":\"A. Kansal, A. Dvivedi, P. Kumar\",\"doi\":\"10.1108/rpj-03-2023-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study to investigate the organized porous network zinc (OPNZ) scaffolds. Their mechanical characteristics, surface roughness and fracture mechanism were assessed in relation to their structural properties. The prospects of fused deposition modeling (FDM) for printing metal scaffolds via rapid tooling have also been studied.\\n\\n\\nDesign/methodology/approach\\nZn scaffolds with different pore and strut sizes were manufactured via the rapid tooling method. This method is a multistep process that begins with the 3D printing of a polymer template. Later, a paraffin template was obtained from the prepared polymer template. Finally, this paraffin template was used to fabricate the Zn scaffold using microwave sintering. The characterization of prepared Zn samples involved structural characterization, microstructural study, surface roughness testing and compression testing. Moreover, based on the Gibson–Ashby model analysis, the model equations’ constant values were evaluated, which can help in predicting the mechanical properties of Zn scaffolds.\\n\\n\\nFindings\\nThe scanning electron microscopy study confirmed that the fabricated sample pores were open and interconnected. The X-ray diffraction analysis revealed that the Zn scaffold contained hexagonal closed-packed Zn peaks related to the a-Zn phase, validating that scaffolds were free from contamination and impurity. The range for ultimate compressive strength, compressive modulus and plateau stresses for Zn samples were found to be 6.75–39 MPa, 0.14–3.51 GPa and 1.85–12.6 MPa by adjusting their porosity, which are comparable with the cancellous bones. The average roughness value for the Zn scaffolds was found to be 1.86 µm.\\n\\n\\nOriginality/value\\nThis research work can widen the scope for extrusion-based FDM printers for fabricating biocompatible and biodegradable metal Zn scaffolds. This study also revealed the effects of scaffold structural properties like porosity, pore and strut size effect on their mechanical characteristics in view of tissue engineering applications.\\n\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-03-2023-0077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-03-2023-0077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的研究有组织的多孔网络锌(OPNZ)支架。对其力学特性、表面粗糙度和断裂机理进行了评价。本文还对熔融沉积建模(FDM)快速模具打印金属支架的前景进行了研究。设计/方法/方法采用快速模具法制造不同孔径和支撑尺寸的锌支架。这种方法是一个多步骤的过程,从聚合物模板的3D打印开始。然后,将所制备的聚合物模板制成石蜡模板。最后,利用该石蜡模板采用微波烧结法制备Zn支架。制备的锌样品的表征包括结构表征、微观组织研究、表面粗糙度测试和压缩测试。此外,基于Gibson-Ashby模型分析,对模型方程的常数值进行了评估,有助于预测Zn支架的力学性能。扫描电镜研究证实,制备的样品孔隙是开放且相互连接的。x射线衍射分析表明,锌支架含有与a-Zn相相关的六方封闭排列的Zn峰,验证了支架没有污染和杂质。通过调整孔隙率,锌试样的极限抗压强度、抗压模量和平台应力范围分别为6.75 ~ 39 MPa、0.14 ~ 3.51 GPa和1.85 ~ 12.6 MPa,与松质骨相当。锌支架的平均粗糙度值为1.86µm。独创性/价值本研究拓宽了挤出式FDM打印机制造生物相容性和生物可降解金属锌支架的范围。本研究还从组织工程应用的角度揭示了孔隙度、孔隙度和支架尺寸效应等支架结构特性对其力学特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping the structural properties of zinc scaffold fabricated via rapid tooling for bone tissue engineering applications
Purpose The purpose of this study to investigate the organized porous network zinc (OPNZ) scaffolds. Their mechanical characteristics, surface roughness and fracture mechanism were assessed in relation to their structural properties. The prospects of fused deposition modeling (FDM) for printing metal scaffolds via rapid tooling have also been studied. Design/methodology/approach Zn scaffolds with different pore and strut sizes were manufactured via the rapid tooling method. This method is a multistep process that begins with the 3D printing of a polymer template. Later, a paraffin template was obtained from the prepared polymer template. Finally, this paraffin template was used to fabricate the Zn scaffold using microwave sintering. The characterization of prepared Zn samples involved structural characterization, microstructural study, surface roughness testing and compression testing. Moreover, based on the Gibson–Ashby model analysis, the model equations’ constant values were evaluated, which can help in predicting the mechanical properties of Zn scaffolds. Findings The scanning electron microscopy study confirmed that the fabricated sample pores were open and interconnected. The X-ray diffraction analysis revealed that the Zn scaffold contained hexagonal closed-packed Zn peaks related to the a-Zn phase, validating that scaffolds were free from contamination and impurity. The range for ultimate compressive strength, compressive modulus and plateau stresses for Zn samples were found to be 6.75–39 MPa, 0.14–3.51 GPa and 1.85–12.6 MPa by adjusting their porosity, which are comparable with the cancellous bones. The average roughness value for the Zn scaffolds was found to be 1.86 µm. Originality/value This research work can widen the scope for extrusion-based FDM printers for fabricating biocompatible and biodegradable metal Zn scaffolds. This study also revealed the effects of scaffold structural properties like porosity, pore and strut size effect on their mechanical characteristics in view of tissue engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rapid Prototyping Journal
Rapid Prototyping Journal 工程技术-材料科学:综合
CiteScore
8.30
自引率
10.30%
发文量
137
审稿时长
4.6 months
期刊介绍: Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area. -Benchmarking – certification and qualification in AM- Mass customisation in AM- Design for AM- Materials aspects- Reviews of processes/applications- CAD and other software aspects- Enhancement of existing processes- Integration with design process- Management implications- New AM processes- Novel applications of AM parts- AM for tooling- Medical applications- Reverse engineering in relation to AM- Additive & Subtractive hybrid manufacturing- Industrialisation
期刊最新文献
Correlation between the part quality, strength and surface roughness of material extrusion process An investigation into the mechanisms that influence laser sintered polyamide-12 top surfaces Experimental and numerical study of in-plane uniaxial compression response of PU foam filled aluminum arrowhead auxetic honeycomb Manufacture of thermoplastic molds by fused filament fabrication 3D printing for rapid prototyping of polyurethane foam molded products A layerwise geometric error compensation procedure for additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1