改进均值估计的修正回归估计-泊松回归方法

IF 1.1 Q3 STATISTICS & PROBABILITY Pakistan Journal of Statistics and Operation Research Pub Date : 2022-12-06 DOI:10.18187/pjsor.v18i4.3955
Zakir Hussain Wani Jana, S. Rizvi, Manish Sharma, M. Bhat, Saqib Mushtaq
{"title":"改进均值估计的修正回归估计-泊松回归方法","authors":"Zakir Hussain Wani Jana, S. Rizvi, Manish Sharma, M. Bhat, Saqib Mushtaq","doi":"10.18187/pjsor.v18i4.3955","DOIUrl":null,"url":null,"abstract":"In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is the most common method used to model count responses in many studies. The expression for bias and mean square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed estimators have been compared theoretically with the existing estimators, and the condition under which the proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean squared error.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Regression Estimators for Improving Mean Estimation -Poisson Regression Approach\",\"authors\":\"Zakir Hussain Wani Jana, S. Rizvi, Manish Sharma, M. Bhat, Saqib Mushtaq\",\"doi\":\"10.18187/pjsor.v18i4.3955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is the most common method used to model count responses in many studies. The expression for bias and mean square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed estimators have been compared theoretically with the existing estimators, and the condition under which the proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean squared error.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i4.3955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i4.3955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一类基于泊松回归的估计量,用于估计无置换简单随机抽样(SRSWOR)中的有限总体均值。泊松回归模型是许多研究中最常用的计数反应模型。得到了该类估计器在一阶近似下的偏置和均方误差的表达式。将所提估计量与现有估计量进行了理论比较,得到了所提估计量优于现有估计量的条件。考虑两个真实数据集来评估所提出的估计器的性能。数值结果证实,在均方误差方面,所提出的估计器优于现有的估计器,如Koc(2021)和Usman等人(2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Regression Estimators for Improving Mean Estimation -Poisson Regression Approach
In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is the most common method used to model count responses in many studies. The expression for bias and mean square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed estimators have been compared theoretically with the existing estimators, and the condition under which the proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean squared error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
期刊最新文献
An Improved Class of Estimators Of Population Mean of Sensitive Variable Using Optional Randomized Response Technique Modeling Tri-Model Data With a New Skew Logistic Distribution Marginal and Conditional both Extreme Value Distributions: A Case of Stochastic Regression Model Assessing the Effect of Non-response in Stratified Random Sampling using Enhanced Ratio Type Estimators under Double Sampling Strategy. A Novel Version of the Exponentiated Weibull Distribution: Copulas, Mathematical Properties and Statistical Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1