基于多尺度贝叶斯推理的红外热成像热阻场估计

IF 3.7 3区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Quantitative Infrared Thermography Journal Pub Date : 2020-07-06 DOI:10.1080/17686733.2020.1771529
M. Groz, A. Sommier, E. Abisset, S. Chevalier, J. Battaglia, J. Batsale, C. Pradère
{"title":"基于多尺度贝叶斯推理的红外热成像热阻场估计","authors":"M. Groz, A. Sommier, E. Abisset, S. Chevalier, J. Battaglia, J. Batsale, C. Pradère","doi":"10.1080/17686733.2020.1771529","DOIUrl":null,"url":null,"abstract":"ABSTRACT The main goal of this paper is the estimation of thermal resistive fields in multilayer samples using the classical front face flash method as excitation and InfRared Thermography (IRT) as a monitoring sensor. The complete inverse processing of a multilayer analytical model can be difficult due to a lack of sensitivity to certain parameters (layer thickness, depth of thermal resistance, etc.) or processing time. For these reasons, our present strategy proposes a Bayesian inference approach. Using the analytical quadrupole method, a reference model can be calculated for a set of parameters. Then, the Bayesian probabilistic method is used to determine the maximum likelihood probability between the measured data and the reference model. To keep the processing method robust and fast, an automatic selection of the calculation range is proposed. Finally, in the case of a bilayer sample, both the thickness and resistive 3D layers are estimated in less than 2 min for a space and time matrix of 50,000 pixels by 4000 time steps with a reasonable relative error of less than 5%.","PeriodicalId":54525,"journal":{"name":"Quantitative Infrared Thermography Journal","volume":"18 1","pages":"332 - 343"},"PeriodicalIF":3.7000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17686733.2020.1771529","citationCount":"4","resultStr":"{\"title\":\"Thermal resistance field estimations from IR thermography using multiscale Bayesian inference\",\"authors\":\"M. Groz, A. Sommier, E. Abisset, S. Chevalier, J. Battaglia, J. Batsale, C. Pradère\",\"doi\":\"10.1080/17686733.2020.1771529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The main goal of this paper is the estimation of thermal resistive fields in multilayer samples using the classical front face flash method as excitation and InfRared Thermography (IRT) as a monitoring sensor. The complete inverse processing of a multilayer analytical model can be difficult due to a lack of sensitivity to certain parameters (layer thickness, depth of thermal resistance, etc.) or processing time. For these reasons, our present strategy proposes a Bayesian inference approach. Using the analytical quadrupole method, a reference model can be calculated for a set of parameters. Then, the Bayesian probabilistic method is used to determine the maximum likelihood probability between the measured data and the reference model. To keep the processing method robust and fast, an automatic selection of the calculation range is proposed. Finally, in the case of a bilayer sample, both the thickness and resistive 3D layers are estimated in less than 2 min for a space and time matrix of 50,000 pixels by 4000 time steps with a reasonable relative error of less than 5%.\",\"PeriodicalId\":54525,\"journal\":{\"name\":\"Quantitative Infrared Thermography Journal\",\"volume\":\"18 1\",\"pages\":\"332 - 343\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17686733.2020.1771529\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Infrared Thermography Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17686733.2020.1771529\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Infrared Thermography Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17686733.2020.1771529","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 4

摘要

摘要:本文的主要目的是利用经典的正面闪光法作为激励,红外热像仪(IRT)作为监测传感器来估计多层样品中的热阻场。由于对某些参数(层厚度、热阻深度等)或处理时间缺乏敏感性,多层分析模型的完全逆处理可能是困难的。由于这些原因,我们目前的策略提出了贝叶斯推理方法。利用解析四极方法,可以计算出一组参数的参考模型。然后,利用贝叶斯概率法确定实测数据与参考模型之间的最大似然概率。为了保证处理方法的鲁棒性和快速性,提出了一种自动选择计算范围的方法。最后,在双层样品的情况下,对于50,000像素的空间和时间矩阵,通过4000个时间步长,在不到2分钟的时间内估计出厚度和电阻3D层,合理的相对误差小于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal resistance field estimations from IR thermography using multiscale Bayesian inference
ABSTRACT The main goal of this paper is the estimation of thermal resistive fields in multilayer samples using the classical front face flash method as excitation and InfRared Thermography (IRT) as a monitoring sensor. The complete inverse processing of a multilayer analytical model can be difficult due to a lack of sensitivity to certain parameters (layer thickness, depth of thermal resistance, etc.) or processing time. For these reasons, our present strategy proposes a Bayesian inference approach. Using the analytical quadrupole method, a reference model can be calculated for a set of parameters. Then, the Bayesian probabilistic method is used to determine the maximum likelihood probability between the measured data and the reference model. To keep the processing method robust and fast, an automatic selection of the calculation range is proposed. Finally, in the case of a bilayer sample, both the thickness and resistive 3D layers are estimated in less than 2 min for a space and time matrix of 50,000 pixels by 4000 time steps with a reasonable relative error of less than 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Infrared Thermography Journal
Quantitative Infrared Thermography Journal Physics and Astronomy-Instrumentation
CiteScore
6.80
自引率
12.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Quantitative InfraRed Thermography Journal (QIRT) provides a forum for industry and academia to discuss the latest developments of instrumentation, theoretical and experimental practices, data reduction, and image processing related to infrared thermography.
期刊最新文献
Automatic segmentation of microporous defects in composite film materials based on the improved attention U-Net module A deep learning based experimental framework for automatic staging of pressure ulcers from thermal images Enhancing the thermographic diagnosis of maxillary sinusitis using deep learning approach Review of unmanned aerial vehicle infrared thermography (UAV-IRT) applications in building thermal performance: towards the thermal performance evaluation of building envelope Evaluation of typical rail defects by induction thermography: experimental results and procedure for data analysis during high-speed laboratory testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1