Liangzhen Zheng, Jintao Meng, Ming-cheng Lin, Rui Lv, Hongjun Cheng, Lixin Zou, Jinyuan Sun, Linxian Li, R. Ren, Sheng Wang
{"title":"猴痘变异体全蛋白质组的结构预测","authors":"Liangzhen Zheng, Jintao Meng, Ming-cheng Lin, Rui Lv, Hongjun Cheng, Lixin Zou, Jinyuan Sun, Linxian Li, R. Ren, Sheng Wang","doi":"10.15212/amm-2022-0017","DOIUrl":null,"url":null,"abstract":"Recently, the monkeypox virus has begun to spread in many countries worldwide [1]. The genome sequence of the monkeypox virus variant responsible for the current outbreak has been reported, thus providing an important resource for better understanding the new variant and accelerating vaccine and drug development. Here, we report structure predictions of the whole proteomes of three monkeypox variants, with annotation of potential small-molecule-binding regions of the proteins. Experimentally determined structures with high similarity to monkeypox proteins were vetted through a structure-alignment algorithm. Our work should help accelerate the development of vaccines and drugs.","PeriodicalId":72055,"journal":{"name":"Acta materia medica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Structure prediction of the entire proteome of monkeypox variants\",\"authors\":\"Liangzhen Zheng, Jintao Meng, Ming-cheng Lin, Rui Lv, Hongjun Cheng, Lixin Zou, Jinyuan Sun, Linxian Li, R. Ren, Sheng Wang\",\"doi\":\"10.15212/amm-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the monkeypox virus has begun to spread in many countries worldwide [1]. The genome sequence of the monkeypox virus variant responsible for the current outbreak has been reported, thus providing an important resource for better understanding the new variant and accelerating vaccine and drug development. Here, we report structure predictions of the whole proteomes of three monkeypox variants, with annotation of potential small-molecule-binding regions of the proteins. Experimentally determined structures with high similarity to monkeypox proteins were vetted through a structure-alignment algorithm. Our work should help accelerate the development of vaccines and drugs.\",\"PeriodicalId\":72055,\"journal\":{\"name\":\"Acta materia medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta materia medica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15212/amm-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta materia medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15212/amm-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure prediction of the entire proteome of monkeypox variants
Recently, the monkeypox virus has begun to spread in many countries worldwide [1]. The genome sequence of the monkeypox virus variant responsible for the current outbreak has been reported, thus providing an important resource for better understanding the new variant and accelerating vaccine and drug development. Here, we report structure predictions of the whole proteomes of three monkeypox variants, with annotation of potential small-molecule-binding regions of the proteins. Experimentally determined structures with high similarity to monkeypox proteins were vetted through a structure-alignment algorithm. Our work should help accelerate the development of vaccines and drugs.