{"title":"通过决策支持提供可视化分析指导","authors":"Wenkai Han, Hans-Jörg Schulz","doi":"10.1177/14738716221147289","DOIUrl":null,"url":null,"abstract":"Guidance in visual analytics aims to support users in accomplishing their analytical goals and generating insights. Different approaches for guidance are widely adopted in many tools and frameworks for various purposes – from helping to focus on relevant data subspaces to selecting suitable visualization techniques. With each of these different purposes come specific considerations on how to provide the needed guidance. In this paper, we propose a generic method for making these considerations by framing the guidance problem as a decision problem and applying decision making theory and models toward its solution. This method passes through three stages: (1) identifying decision points; (2) deriving and evaluating alternatives; (3) visualizing the resulting alternatives to support users in comparing them and making their choice. Our method is realized as a set of practical worksheets and illustrated by applying it to a use case of providing guidance among different clustering methods. Finally, we compare our method with existing guidance frameworks to relate and delineate the respective goals and contributions of each.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":"22 1","pages":"140 - 165"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Providing visual analytics guidance through decision support\",\"authors\":\"Wenkai Han, Hans-Jörg Schulz\",\"doi\":\"10.1177/14738716221147289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guidance in visual analytics aims to support users in accomplishing their analytical goals and generating insights. Different approaches for guidance are widely adopted in many tools and frameworks for various purposes – from helping to focus on relevant data subspaces to selecting suitable visualization techniques. With each of these different purposes come specific considerations on how to provide the needed guidance. In this paper, we propose a generic method for making these considerations by framing the guidance problem as a decision problem and applying decision making theory and models toward its solution. This method passes through three stages: (1) identifying decision points; (2) deriving and evaluating alternatives; (3) visualizing the resulting alternatives to support users in comparing them and making their choice. Our method is realized as a set of practical worksheets and illustrated by applying it to a use case of providing guidance among different clustering methods. Finally, we compare our method with existing guidance frameworks to relate and delineate the respective goals and contributions of each.\",\"PeriodicalId\":50360,\"journal\":{\"name\":\"Information Visualization\",\"volume\":\"22 1\",\"pages\":\"140 - 165\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/14738716221147289\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716221147289","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Providing visual analytics guidance through decision support
Guidance in visual analytics aims to support users in accomplishing their analytical goals and generating insights. Different approaches for guidance are widely adopted in many tools and frameworks for various purposes – from helping to focus on relevant data subspaces to selecting suitable visualization techniques. With each of these different purposes come specific considerations on how to provide the needed guidance. In this paper, we propose a generic method for making these considerations by framing the guidance problem as a decision problem and applying decision making theory and models toward its solution. This method passes through three stages: (1) identifying decision points; (2) deriving and evaluating alternatives; (3) visualizing the resulting alternatives to support users in comparing them and making their choice. Our method is realized as a set of practical worksheets and illustrated by applying it to a use case of providing guidance among different clustering methods. Finally, we compare our method with existing guidance frameworks to relate and delineate the respective goals and contributions of each.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).