{"title":"光伏组件中组件工作温度对组件效率的影响以及热电效应对光伏组件热量的回收","authors":"Ramazan KAYABAŞI1, Metin Kaya","doi":"10.18186/thermal.1243519","DOIUrl":null,"url":null,"abstract":"One of the parameters affecting the efficiency of photovoltaic (PV) modules and PV systems is the temperature. The factors that increase the temperature in PV modules cause loss of efficiency. In this study, experiments have been conducted with the aim of re ducing the module temperature. For this purpose, four polycrystalline and four monocrystalline PV modules, all with the same features, were used. A pair of polycrystalline and monocrystalline modules were used as reference modules. The aim of this study is to reduce the operating temperature of the modules, while also decreasing the transient temperature fluctuations in the system, in order to prevent the loss of efficiency. For this reason, current, voltage and power values of PV modules have been examined and the relationship between these values and module temperature has been explained. As a result, temperature values were measured at 30-80°C in reference modules, 30-50°C in heat pipe modules, 30-37°C in modules using heat pipes and phase-changing material, and 30-66°C in modules using phase-changing material with flexible surfaces. If the PV module operating temperature is increased by 35°C, the module efficiency decreases by 10%. Heat pipe and PCM balance the temperature in PV/T/PCM monocrystalline and polycrystalline modules. In PV/T/PCM modules, efficiency loss caused by temperature increase is 1%. In addition, electrical energy is produced from the heat accumulated on the surface of the PV module by means of Thermoelectric Generator (TEG). When the temperature difference between the surfaces is 15°C, the naturally cooled TE provides 0.45V energy output, while the forced-cooled TEG provides 0.97V energy output. As the temperature gap between the surfaces increases, the voltage and current values of the TEG also increase. Briefly, TEG’s power values increase up to 5W depending on the temperature gap between surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of module operating temperature on module efficiency in photovoltaic modules and recovery of photovoltaic module heat by thermoelectric effect\",\"authors\":\"Ramazan KAYABAŞI1, Metin Kaya\",\"doi\":\"10.18186/thermal.1243519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the parameters affecting the efficiency of photovoltaic (PV) modules and PV systems is the temperature. The factors that increase the temperature in PV modules cause loss of efficiency. In this study, experiments have been conducted with the aim of re ducing the module temperature. For this purpose, four polycrystalline and four monocrystalline PV modules, all with the same features, were used. A pair of polycrystalline and monocrystalline modules were used as reference modules. The aim of this study is to reduce the operating temperature of the modules, while also decreasing the transient temperature fluctuations in the system, in order to prevent the loss of efficiency. For this reason, current, voltage and power values of PV modules have been examined and the relationship between these values and module temperature has been explained. As a result, temperature values were measured at 30-80°C in reference modules, 30-50°C in heat pipe modules, 30-37°C in modules using heat pipes and phase-changing material, and 30-66°C in modules using phase-changing material with flexible surfaces. If the PV module operating temperature is increased by 35°C, the module efficiency decreases by 10%. Heat pipe and PCM balance the temperature in PV/T/PCM monocrystalline and polycrystalline modules. In PV/T/PCM modules, efficiency loss caused by temperature increase is 1%. In addition, electrical energy is produced from the heat accumulated on the surface of the PV module by means of Thermoelectric Generator (TEG). When the temperature difference between the surfaces is 15°C, the naturally cooled TE provides 0.45V energy output, while the forced-cooled TEG provides 0.97V energy output. As the temperature gap between the surfaces increases, the voltage and current values of the TEG also increase. Briefly, TEG’s power values increase up to 5W depending on the temperature gap between surfaces.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1243519\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1243519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of module operating temperature on module efficiency in photovoltaic modules and recovery of photovoltaic module heat by thermoelectric effect
One of the parameters affecting the efficiency of photovoltaic (PV) modules and PV systems is the temperature. The factors that increase the temperature in PV modules cause loss of efficiency. In this study, experiments have been conducted with the aim of re ducing the module temperature. For this purpose, four polycrystalline and four monocrystalline PV modules, all with the same features, were used. A pair of polycrystalline and monocrystalline modules were used as reference modules. The aim of this study is to reduce the operating temperature of the modules, while also decreasing the transient temperature fluctuations in the system, in order to prevent the loss of efficiency. For this reason, current, voltage and power values of PV modules have been examined and the relationship between these values and module temperature has been explained. As a result, temperature values were measured at 30-80°C in reference modules, 30-50°C in heat pipe modules, 30-37°C in modules using heat pipes and phase-changing material, and 30-66°C in modules using phase-changing material with flexible surfaces. If the PV module operating temperature is increased by 35°C, the module efficiency decreases by 10%. Heat pipe and PCM balance the temperature in PV/T/PCM monocrystalline and polycrystalline modules. In PV/T/PCM modules, efficiency loss caused by temperature increase is 1%. In addition, electrical energy is produced from the heat accumulated on the surface of the PV module by means of Thermoelectric Generator (TEG). When the temperature difference between the surfaces is 15°C, the naturally cooled TE provides 0.45V energy output, while the forced-cooled TEG provides 0.97V energy output. As the temperature gap between the surfaces increases, the voltage and current values of the TEG also increase. Briefly, TEG’s power values increase up to 5W depending on the temperature gap between surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.