与朋友相处:通过人工智能和区块链加强多竞争对手的合作治理

IF 3.4 3区 管理学 Q1 ECONOMICS Industry and Innovation Pub Date : 2023-01-19 DOI:10.1080/13662716.2023.2168519
J. Woolley
{"title":"与朋友相处:通过人工智能和区块链加强多竞争对手的合作治理","authors":"J. Woolley","doi":"10.1080/13662716.2023.2168519","DOIUrl":null,"url":null,"abstract":"ABSTRACT Collaborating with one competitor is difficult but collaborating with several competitors is a monumental challenge. However, multi-competitor coopetition, or cooperation between multiple competitors, is increasing. This study examines how recent advancements in artificial intelligence (AI) and blockchain can support multi-competitor coopetition by enhancing governance. Examining two coopetitive R&D consortia in pharmaceuticals and medical imaging, we find that a nascent form of AI called federated learning can address key coopetition concerns such proprietary and confidential data protection, knowledge leakage, data sovereignty and silos thereby maintaining organisational boundaries and autonomy. The use of federated learning and blockchain increases transparency and accountability, which reduces information asymmetries and power differential inequities. Together, these technologies decentralise governance and authority, reducing the tension between collective value creation and individual value appropriation inherent in coopetition, particularly those with multiple competitors. Finally, this study illustrates how emerging technologies challenge traditional assumptions about organisational boundaries, distributed innovation, and coopetition.","PeriodicalId":13585,"journal":{"name":"Industry and Innovation","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Getting along with frenemies: enhancing multi-competitor coopetition governance through artificial intelligence and blockchain\",\"authors\":\"J. Woolley\",\"doi\":\"10.1080/13662716.2023.2168519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Collaborating with one competitor is difficult but collaborating with several competitors is a monumental challenge. However, multi-competitor coopetition, or cooperation between multiple competitors, is increasing. This study examines how recent advancements in artificial intelligence (AI) and blockchain can support multi-competitor coopetition by enhancing governance. Examining two coopetitive R&D consortia in pharmaceuticals and medical imaging, we find that a nascent form of AI called federated learning can address key coopetition concerns such proprietary and confidential data protection, knowledge leakage, data sovereignty and silos thereby maintaining organisational boundaries and autonomy. The use of federated learning and blockchain increases transparency and accountability, which reduces information asymmetries and power differential inequities. Together, these technologies decentralise governance and authority, reducing the tension between collective value creation and individual value appropriation inherent in coopetition, particularly those with multiple competitors. Finally, this study illustrates how emerging technologies challenge traditional assumptions about organisational boundaries, distributed innovation, and coopetition.\",\"PeriodicalId\":13585,\"journal\":{\"name\":\"Industry and Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industry and Innovation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1080/13662716.2023.2168519\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industry and Innovation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/13662716.2023.2168519","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Getting along with frenemies: enhancing multi-competitor coopetition governance through artificial intelligence and blockchain
ABSTRACT Collaborating with one competitor is difficult but collaborating with several competitors is a monumental challenge. However, multi-competitor coopetition, or cooperation between multiple competitors, is increasing. This study examines how recent advancements in artificial intelligence (AI) and blockchain can support multi-competitor coopetition by enhancing governance. Examining two coopetitive R&D consortia in pharmaceuticals and medical imaging, we find that a nascent form of AI called federated learning can address key coopetition concerns such proprietary and confidential data protection, knowledge leakage, data sovereignty and silos thereby maintaining organisational boundaries and autonomy. The use of federated learning and blockchain increases transparency and accountability, which reduces information asymmetries and power differential inequities. Together, these technologies decentralise governance and authority, reducing the tension between collective value creation and individual value appropriation inherent in coopetition, particularly those with multiple competitors. Finally, this study illustrates how emerging technologies challenge traditional assumptions about organisational boundaries, distributed innovation, and coopetition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
7.70%
发文量
41
期刊介绍: Industry and Innovation is an international refereed journal presenting high-quality original scholarship of the dynamics of industries and innovation. Interdisciplinary in nature, Industry and Innovation is informed by, and contributes in turn to, advancing the theoretical frontier within economics, organization theory, and economic geography. Theoretical issues encompass: •What are the institutional underpinnings for different organizational forms? •How are different industrial structures and institutions related to innovation patterns and economic performance?
期刊最新文献
Exploring the nexus of organisational culture and sustainability for green innovation The emergence of new regional technological specialisations: exploring the role of organisations and their technological network structure Partnering with green start-ups: a vehicle for eco-innovation? R&D policy instrument mix sequencing: evaluating the impact of receiving R&D grants and R&D tax credits over time on firm-level R&D Firms’ patenting and collective cumulative knowledge: evidence from the largest R&D investors in the world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1