外骨骼:发展的挑战

IF 3.4 Q2 ENGINEERING, BIOMEDICAL Wearable technologies Pub Date : 2023-01-05 eCollection Date: 2023-01-01 DOI:10.1017/wtc.2022.28
Klaus Bengler, Christina M Harbauer, Martin Fleischer
{"title":"外骨骼:发展的挑战","authors":"Klaus Bengler, Christina M Harbauer, Martin Fleischer","doi":"10.1017/wtc.2022.28","DOIUrl":null,"url":null,"abstract":"<p><p>The development of exoskeletons is currently a lengthy process full of challenges. We are proposing a framework to accelerate the process and make the resulting exoskeletons more user-centered. The needed accomplishments in science are described in an effort to lay the foundation for future research projects. Since the early 2000s, exoskeletons have been discussed as an emerging technology in industrial, medical, or military applications. Those systems are designed to support people during manual tasks. At first, those systems lacked broad acceptance. Many models found their niches in ongoing developments and more diverse systems entering the market. There are still applications that are in dire need of such assistance. Due to the lack of experience with body-worn robotics, the development of such systems has been shaped by trial and error. The lack of legacy products results in longer development times. In this paper, a process to generate a framework is presented to display the required research to enable future exoskeleton designers. Owing to their proximity to the user's body, exoskeletons are highly complex systems that need sophisticated subsystems, such as kinematic, control, interaction design, or actuators, to be accepted by users. Due to the wide variety of fields and high user demands, a synchronized multidisciplinary effort is necessary. To achieve this, a process to develop a modular framework for exoskeleton design is proposed. It focuses on user- and use-case-centered solutions for matching kinematics, actuation, and control. To ensure the usefulness of the framework, an evaluation of the incorporated solutions is required.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936272/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exoskeletons: A challenge for development.\",\"authors\":\"Klaus Bengler, Christina M Harbauer, Martin Fleischer\",\"doi\":\"10.1017/wtc.2022.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of exoskeletons is currently a lengthy process full of challenges. We are proposing a framework to accelerate the process and make the resulting exoskeletons more user-centered. The needed accomplishments in science are described in an effort to lay the foundation for future research projects. Since the early 2000s, exoskeletons have been discussed as an emerging technology in industrial, medical, or military applications. Those systems are designed to support people during manual tasks. At first, those systems lacked broad acceptance. Many models found their niches in ongoing developments and more diverse systems entering the market. There are still applications that are in dire need of such assistance. Due to the lack of experience with body-worn robotics, the development of such systems has been shaped by trial and error. The lack of legacy products results in longer development times. In this paper, a process to generate a framework is presented to display the required research to enable future exoskeleton designers. Owing to their proximity to the user's body, exoskeletons are highly complex systems that need sophisticated subsystems, such as kinematic, control, interaction design, or actuators, to be accepted by users. Due to the wide variety of fields and high user demands, a synchronized multidisciplinary effort is necessary. To achieve this, a process to develop a modular framework for exoskeleton design is proposed. It focuses on user- and use-case-centered solutions for matching kinematics, actuation, and control. To ensure the usefulness of the framework, an evaluation of the incorporated solutions is required.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2022.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2022.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

外骨骼的发展目前是一个漫长的过程,充满了挑战。我们正在提出一个框架来加速这一过程,并使最终的外骨骼更加以用户为中心。描述科学中所需要的成就是为了为未来的研究项目奠定基础。自21世纪初以来,外骨骼作为一项新兴技术在工业、医疗或军事应用中得到了讨论。这些系统的设计是为了支持人们完成手工任务。起初,这些系统缺乏广泛的接受。许多模型在正在进行的开发和进入市场的更多样化的系统中找到了自己的位置。仍有一些应用迫切需要这种援助。由于缺乏穿戴式机器人的经验,这种系统的发展一直是由试错形成的。遗留产品的缺乏导致了更长的开发时间。在本文中,提出了一个生成框架的过程,以显示所需的研究,以使未来的外骨骼设计师能够实现。由于外骨骼非常接近用户的身体,因此它是高度复杂的系统,需要复杂的子系统,如运动学、控制、交互设计或执行器,才能被用户接受。由于领域的多样性和用户的高需求,同步多学科的努力是必要的。为了实现这一目标,提出了一种开发外骨骼设计模块化框架的过程。它侧重于以用户和用例为中心的匹配运动学,驱动和控制的解决方案。为了确保框架的有效性,需要对合并的解决方案进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exoskeletons: A challenge for development.

The development of exoskeletons is currently a lengthy process full of challenges. We are proposing a framework to accelerate the process and make the resulting exoskeletons more user-centered. The needed accomplishments in science are described in an effort to lay the foundation for future research projects. Since the early 2000s, exoskeletons have been discussed as an emerging technology in industrial, medical, or military applications. Those systems are designed to support people during manual tasks. At first, those systems lacked broad acceptance. Many models found their niches in ongoing developments and more diverse systems entering the market. There are still applications that are in dire need of such assistance. Due to the lack of experience with body-worn robotics, the development of such systems has been shaped by trial and error. The lack of legacy products results in longer development times. In this paper, a process to generate a framework is presented to display the required research to enable future exoskeleton designers. Owing to their proximity to the user's body, exoskeletons are highly complex systems that need sophisticated subsystems, such as kinematic, control, interaction design, or actuators, to be accepted by users. Due to the wide variety of fields and high user demands, a synchronized multidisciplinary effort is necessary. To achieve this, a process to develop a modular framework for exoskeleton design is proposed. It focuses on user- and use-case-centered solutions for matching kinematics, actuation, and control. To ensure the usefulness of the framework, an evaluation of the incorporated solutions is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis. Acute suppression of lower limb spasm by sacral afferent stimulation for people with spinal cord injury: A pilot study GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM. A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients - ADDENDUM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1