{"title":"基于PRESENT分组密码的射频识别系统安全认证","authors":"Bharathi Ramachandra, Smitha Elsa Peter","doi":"10.11591/ijece.v13i5.pp5462-5471","DOIUrl":null,"url":null,"abstract":"The internet of things (IoT) is an emerging and robust technology to interconnect billions of objects or devices via the internet to communicate smartly. The radio frequency identification (RFID) system plays a significant role in IoT systems, providing most features like mutual establishment, key establishment, and data confidentiality. This manuscript designed secure authentication of IoT-based RFID systems using the light-weight PRESENT algorithm on the hardware platform. The PRESENT-256 block cipher is considered in this work, and it supports 64-bit data with a 256-key length. The PRESENT-80/128 cipher is also designed along with PRESENT-256 at electronic codebook (ECB) mode for Secured mutual authentication between RFID tag and reader for IoT applications. The secured authentication is established in two stages: Tag recognition from reader, mutual authentication between tag and reader using PRESENT-80/128/256 cipher modules. The complete secured authentication of IoT-based RFID system simulation results is verified using the chip-scope tool with field-programmable gate array (FPGA) results. The comparative results for PRESENT block cipher with existing PRESENT ciphers and other light-weight algorithms are analyzed with resource improvements. The proposed secured authentication work is compared with similar RFID-mutual authentication (MA) approaches with better chip area and frequency improvements.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secured authentication of radio-frequency identification system using PRESENT block cipher\",\"authors\":\"Bharathi Ramachandra, Smitha Elsa Peter\",\"doi\":\"10.11591/ijece.v13i5.pp5462-5471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internet of things (IoT) is an emerging and robust technology to interconnect billions of objects or devices via the internet to communicate smartly. The radio frequency identification (RFID) system plays a significant role in IoT systems, providing most features like mutual establishment, key establishment, and data confidentiality. This manuscript designed secure authentication of IoT-based RFID systems using the light-weight PRESENT algorithm on the hardware platform. The PRESENT-256 block cipher is considered in this work, and it supports 64-bit data with a 256-key length. The PRESENT-80/128 cipher is also designed along with PRESENT-256 at electronic codebook (ECB) mode for Secured mutual authentication between RFID tag and reader for IoT applications. The secured authentication is established in two stages: Tag recognition from reader, mutual authentication between tag and reader using PRESENT-80/128/256 cipher modules. The complete secured authentication of IoT-based RFID system simulation results is verified using the chip-scope tool with field-programmable gate array (FPGA) results. The comparative results for PRESENT block cipher with existing PRESENT ciphers and other light-weight algorithms are analyzed with resource improvements. The proposed secured authentication work is compared with similar RFID-mutual authentication (MA) approaches with better chip area and frequency improvements.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5462-5471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5462-5471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Secured authentication of radio-frequency identification system using PRESENT block cipher
The internet of things (IoT) is an emerging and robust technology to interconnect billions of objects or devices via the internet to communicate smartly. The radio frequency identification (RFID) system plays a significant role in IoT systems, providing most features like mutual establishment, key establishment, and data confidentiality. This manuscript designed secure authentication of IoT-based RFID systems using the light-weight PRESENT algorithm on the hardware platform. The PRESENT-256 block cipher is considered in this work, and it supports 64-bit data with a 256-key length. The PRESENT-80/128 cipher is also designed along with PRESENT-256 at electronic codebook (ECB) mode for Secured mutual authentication between RFID tag and reader for IoT applications. The secured authentication is established in two stages: Tag recognition from reader, mutual authentication between tag and reader using PRESENT-80/128/256 cipher modules. The complete secured authentication of IoT-based RFID system simulation results is verified using the chip-scope tool with field-programmable gate array (FPGA) results. The comparative results for PRESENT block cipher with existing PRESENT ciphers and other light-weight algorithms are analyzed with resource improvements. The proposed secured authentication work is compared with similar RFID-mutual authentication (MA) approaches with better chip area and frequency improvements.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]