{"title":"使用椭球型TiO2纳米颗粒调节玻璃的结构和润湿性","authors":"A. M. Machinin, A. Awang, C. Pien, S. K. Ghoshal","doi":"10.15251/jor.2022.186.731","DOIUrl":null,"url":null,"abstract":"Self-cleaning glasses became demanding for various advanced applications due to their manifold advantages. In this view, some tellurite glasses containing TiO2 nanoparticles with varying concentrations were synthesized using the standard melt-quenching. These glasses were transparent with a reddish appearance. The HRTEM images of the glasses showed the presence of ellipsoidal TiO2 NPs with sizes ranging from 9−22 nm and 5−9 nm along the major and minor axis, respectively. The lattice fringe pattern of the selected TiO2 NPs confirmed their anatase structure with a lattice spacing of 0.36 nm. The observed reduction in the water contact angle from 67.5° to 43.0° of the glasses indicated their hydrophilic nature. The high work of adhesion (0.101− 0.126 N.m-1 ) of the glasses revealed the strong interfacial attractive force between water and glass. It was demonstrated that by adjusting the TiO2 NPs contents the hydrophilic traits of the glassed can be tailored, indicating the suitability for self-cleaning applications.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tuning structural and wettability properties of glass using ellipsoidal TiO2 nanoparticles\",\"authors\":\"A. M. Machinin, A. Awang, C. Pien, S. K. Ghoshal\",\"doi\":\"10.15251/jor.2022.186.731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-cleaning glasses became demanding for various advanced applications due to their manifold advantages. In this view, some tellurite glasses containing TiO2 nanoparticles with varying concentrations were synthesized using the standard melt-quenching. These glasses were transparent with a reddish appearance. The HRTEM images of the glasses showed the presence of ellipsoidal TiO2 NPs with sizes ranging from 9−22 nm and 5−9 nm along the major and minor axis, respectively. The lattice fringe pattern of the selected TiO2 NPs confirmed their anatase structure with a lattice spacing of 0.36 nm. The observed reduction in the water contact angle from 67.5° to 43.0° of the glasses indicated their hydrophilic nature. The high work of adhesion (0.101− 0.126 N.m-1 ) of the glasses revealed the strong interfacial attractive force between water and glass. It was demonstrated that by adjusting the TiO2 NPs contents the hydrophilic traits of the glassed can be tailored, indicating the suitability for self-cleaning applications.\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2022.186.731\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.186.731","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tuning structural and wettability properties of glass using ellipsoidal TiO2 nanoparticles
Self-cleaning glasses became demanding for various advanced applications due to their manifold advantages. In this view, some tellurite glasses containing TiO2 nanoparticles with varying concentrations were synthesized using the standard melt-quenching. These glasses were transparent with a reddish appearance. The HRTEM images of the glasses showed the presence of ellipsoidal TiO2 NPs with sizes ranging from 9−22 nm and 5−9 nm along the major and minor axis, respectively. The lattice fringe pattern of the selected TiO2 NPs confirmed their anatase structure with a lattice spacing of 0.36 nm. The observed reduction in the water contact angle from 67.5° to 43.0° of the glasses indicated their hydrophilic nature. The high work of adhesion (0.101− 0.126 N.m-1 ) of the glasses revealed the strong interfacial attractive force between water and glass. It was demonstrated that by adjusting the TiO2 NPs contents the hydrophilic traits of the glassed can be tailored, indicating the suitability for self-cleaning applications.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.