{"title":"具有切换收益的几何布朗运动极大值的折现最优停止问题","authors":"P. Gapeev, P. Kort, M. Lavrutich","doi":"10.1017/apr.2020.57","DOIUrl":null,"url":null,"abstract":"Abstract We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/apr.2020.57","citationCount":"7","resultStr":"{\"title\":\"Discounted Optimal Stopping Problems for Maxima of Geometric Brownian Motions With Switching Payoffs\",\"authors\":\"P. Gapeev, P. Kort, M. Lavrutich\",\"doi\":\"10.1017/apr.2020.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/apr.2020.57\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2020.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2020.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discounted Optimal Stopping Problems for Maxima of Geometric Brownian Motions With Switching Payoffs
Abstract We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.