David A. Stanton, Hannah E. Wilson, Matthew G. Chapa, J. Link, Kristin Lupinacci, W. Geldenhuys, E. Pistilli
{"title":"人乳腺肿瘤异种移植物生长后肌肉中过氧化物酶体增殖物激活受体γ基因网络的拯救","authors":"David A. Stanton, Hannah E. Wilson, Matthew G. Chapa, J. Link, Kristin Lupinacci, W. Geldenhuys, E. Pistilli","doi":"10.1002/rco2.69","DOIUrl":null,"url":null,"abstract":"Fatigue is common in patents with breast cancer (BC), and can occur in patients with early stage disease and in the absence of muscle wasting (i.e. cachexia). We have reported transcriptional and proteomic alterations in muscles from BC patients, which are associated with fatigue. Mice implanted with human BC xenografts recapitulate the muscle molecular composition changes seen in patients, coupled with a greater rate of contraction‐induced fatigue. Multiple bioinformatics platforms in both human and mouse muscles have identified peroxisome proliferator activated receptor gamma (PPARG) as central to this phenotype, with several PPARG target genes downregulated in muscle in response to tumour growth. The current study tested the hypothesis that the PPARG agonist pioglitazone (pio), a commonly prescribed diabetes drug, would rescue the transcriptional alterations observed in muscles of tumour‐bearing mice.","PeriodicalId":73544,"journal":{"name":"JCSM rapid communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rescue of a peroxisome proliferator activated receptor gamma gene network in muscle after growth of human breast tumour xenografts\",\"authors\":\"David A. Stanton, Hannah E. Wilson, Matthew G. Chapa, J. Link, Kristin Lupinacci, W. Geldenhuys, E. Pistilli\",\"doi\":\"10.1002/rco2.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue is common in patents with breast cancer (BC), and can occur in patients with early stage disease and in the absence of muscle wasting (i.e. cachexia). We have reported transcriptional and proteomic alterations in muscles from BC patients, which are associated with fatigue. Mice implanted with human BC xenografts recapitulate the muscle molecular composition changes seen in patients, coupled with a greater rate of contraction‐induced fatigue. Multiple bioinformatics platforms in both human and mouse muscles have identified peroxisome proliferator activated receptor gamma (PPARG) as central to this phenotype, with several PPARG target genes downregulated in muscle in response to tumour growth. The current study tested the hypothesis that the PPARG agonist pioglitazone (pio), a commonly prescribed diabetes drug, would rescue the transcriptional alterations observed in muscles of tumour‐bearing mice.\",\"PeriodicalId\":73544,\"journal\":{\"name\":\"JCSM rapid communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCSM rapid communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rco2.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCSM rapid communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rco2.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rescue of a peroxisome proliferator activated receptor gamma gene network in muscle after growth of human breast tumour xenografts
Fatigue is common in patents with breast cancer (BC), and can occur in patients with early stage disease and in the absence of muscle wasting (i.e. cachexia). We have reported transcriptional and proteomic alterations in muscles from BC patients, which are associated with fatigue. Mice implanted with human BC xenografts recapitulate the muscle molecular composition changes seen in patients, coupled with a greater rate of contraction‐induced fatigue. Multiple bioinformatics platforms in both human and mouse muscles have identified peroxisome proliferator activated receptor gamma (PPARG) as central to this phenotype, with several PPARG target genes downregulated in muscle in response to tumour growth. The current study tested the hypothesis that the PPARG agonist pioglitazone (pio), a commonly prescribed diabetes drug, would rescue the transcriptional alterations observed in muscles of tumour‐bearing mice.