Bino Nelson, Haris Pandiyapallil Abdul Khadir, Sheeba Odattil
{"title":"基于迁移学习的深度神经网络检测蓝光眼底自荧光图像CSR","authors":"Bino Nelson, Haris Pandiyapallil Abdul Khadir, Sheeba Odattil","doi":"10.32985/ijeces.14.3.5","DOIUrl":null,"url":null,"abstract":"Fluid clot below the retinal surface is the root cause of Central Serous Retinopathy (CSR), often referred to as Central Serous Chorioretinopathy (CSC). Delicate tissues that absorb sunlight and enable the brain to recognize images make up the retina. This important organ is vulnerable to damage, which could result in blindness and vision loss for the affected person. Therefore, complete visual loss may be reversed and, in some circumstances, may return to normal with early diagnosis discovery. Therefore, timely and precise CSR detection prevents serious damage to the macula and serves as a foundation for the detection of other retinal disorders. Although CSR has been detected using Blue Wave Fundus Autofluorescence (BWFA) images, developing an accurate and efficient computational system is still difficult. This paper focuses on the use of trained Convolutional Neural Networks (CNN) to implement a framework for accurate and automatic CSR recognition from BWFA images. Transfer Learning has been used in conjunction with pre-trained network architectures (VGG19) for classification. Statistical parameter evaluation has been used to investigate the effectiveness of DCNN. For VGG19, the statistic parameters evaluation revealed a classification accuracy of 97.30%, a precision of 99.56%, an F1 score of 97.25%, and a recall of 95.04% when using a BWFA image dataset collected from a local eye hospital in Cochin, Kerala, India. Identification of CSR from BWFA images is not done before. This paper illustrates how the proposed framework might be applied in clinical situations to assist physicians and clinicians in the identification of retinal diseases.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of CSR from Blue Wave Fundus Autofluorescence Images using Deep Neural Network Based on Transfer Learning\",\"authors\":\"Bino Nelson, Haris Pandiyapallil Abdul Khadir, Sheeba Odattil\",\"doi\":\"10.32985/ijeces.14.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluid clot below the retinal surface is the root cause of Central Serous Retinopathy (CSR), often referred to as Central Serous Chorioretinopathy (CSC). Delicate tissues that absorb sunlight and enable the brain to recognize images make up the retina. This important organ is vulnerable to damage, which could result in blindness and vision loss for the affected person. Therefore, complete visual loss may be reversed and, in some circumstances, may return to normal with early diagnosis discovery. Therefore, timely and precise CSR detection prevents serious damage to the macula and serves as a foundation for the detection of other retinal disorders. Although CSR has been detected using Blue Wave Fundus Autofluorescence (BWFA) images, developing an accurate and efficient computational system is still difficult. This paper focuses on the use of trained Convolutional Neural Networks (CNN) to implement a framework for accurate and automatic CSR recognition from BWFA images. Transfer Learning has been used in conjunction with pre-trained network architectures (VGG19) for classification. Statistical parameter evaluation has been used to investigate the effectiveness of DCNN. For VGG19, the statistic parameters evaluation revealed a classification accuracy of 97.30%, a precision of 99.56%, an F1 score of 97.25%, and a recall of 95.04% when using a BWFA image dataset collected from a local eye hospital in Cochin, Kerala, India. Identification of CSR from BWFA images is not done before. This paper illustrates how the proposed framework might be applied in clinical situations to assist physicians and clinicians in the identification of retinal diseases.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Detection of CSR from Blue Wave Fundus Autofluorescence Images using Deep Neural Network Based on Transfer Learning
Fluid clot below the retinal surface is the root cause of Central Serous Retinopathy (CSR), often referred to as Central Serous Chorioretinopathy (CSC). Delicate tissues that absorb sunlight and enable the brain to recognize images make up the retina. This important organ is vulnerable to damage, which could result in blindness and vision loss for the affected person. Therefore, complete visual loss may be reversed and, in some circumstances, may return to normal with early diagnosis discovery. Therefore, timely and precise CSR detection prevents serious damage to the macula and serves as a foundation for the detection of other retinal disorders. Although CSR has been detected using Blue Wave Fundus Autofluorescence (BWFA) images, developing an accurate and efficient computational system is still difficult. This paper focuses on the use of trained Convolutional Neural Networks (CNN) to implement a framework for accurate and automatic CSR recognition from BWFA images. Transfer Learning has been used in conjunction with pre-trained network architectures (VGG19) for classification. Statistical parameter evaluation has been used to investigate the effectiveness of DCNN. For VGG19, the statistic parameters evaluation revealed a classification accuracy of 97.30%, a precision of 99.56%, an F1 score of 97.25%, and a recall of 95.04% when using a BWFA image dataset collected from a local eye hospital in Cochin, Kerala, India. Identification of CSR from BWFA images is not done before. This paper illustrates how the proposed framework might be applied in clinical situations to assist physicians and clinicians in the identification of retinal diseases.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.