基于忆阻器和多米诺逻辑的节能和耐噪神经形态计算

IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers in Nanotechnology Pub Date : 2023-02-28 DOI:10.3389/fnano.2023.1128667
Hagar Hendy, Cory E. Merkel
{"title":"基于忆阻器和多米诺逻辑的节能和耐噪神经形态计算","authors":"Hagar Hendy, Cory E. Merkel","doi":"10.3389/fnano.2023.1128667","DOIUrl":null,"url":null,"abstract":"The growing scale and complexity of artificial intelligence (AI) models has prompted several new research efforts in the area of neuromorphic computing. A key aim of neuromorphic computing is to enable advanced AI algorithms to run on energy-constrained hardware. In this work, we propose a novel energy-efficient neuromorphic architecture based on memristors and domino logic. The design uses the delay of memristor RC circuits to represent synaptic computations and a simple binary neuron activation function. Synchronization schemes are proposed for communicating information between neural network layers, and a simple linear power model is developed to estimate the design’s energy efficiency for a particular network size. Results indicate that the proposed architecture can achieve 1.26 fJ per classification per synapse and achieves high accuracy on image classification even in the presence of large noise.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient and noise-tolerant neuromorphic computing based on memristors and domino logic\",\"authors\":\"Hagar Hendy, Cory E. Merkel\",\"doi\":\"10.3389/fnano.2023.1128667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing scale and complexity of artificial intelligence (AI) models has prompted several new research efforts in the area of neuromorphic computing. A key aim of neuromorphic computing is to enable advanced AI algorithms to run on energy-constrained hardware. In this work, we propose a novel energy-efficient neuromorphic architecture based on memristors and domino logic. The design uses the delay of memristor RC circuits to represent synaptic computations and a simple binary neuron activation function. Synchronization schemes are proposed for communicating information between neural network layers, and a simple linear power model is developed to estimate the design’s energy efficiency for a particular network size. Results indicate that the proposed architecture can achieve 1.26 fJ per classification per synapse and achieves high accuracy on image classification even in the presence of large noise.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2023.1128667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2023.1128667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)模型的规模和复杂性不断增长,促使神经形态计算领域做出了一些新的研究努力。神经形态计算的一个关键目标是使先进的人工智能算法能够在能量受限的硬件上运行。在这项工作中,我们提出了一种基于忆阻器和多米诺逻辑的新型节能神经形态结构。该设计使用忆阻器RC电路的延迟来表示突触计算和简单的二进制神经元激活函数。提出了用于神经网络层之间信息通信的同步方案,并开发了一个简单的线性功率模型来估计特定网络大小的设计能效。结果表明,所提出的架构可以实现每个突触1.26fJ的每次分类,并且即使在存在大噪声的情况下也能实现高精度的图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficient and noise-tolerant neuromorphic computing based on memristors and domino logic
The growing scale and complexity of artificial intelligence (AI) models has prompted several new research efforts in the area of neuromorphic computing. A key aim of neuromorphic computing is to enable advanced AI algorithms to run on energy-constrained hardware. In this work, we propose a novel energy-efficient neuromorphic architecture based on memristors and domino logic. The design uses the delay of memristor RC circuits to represent synaptic computations and a simple binary neuron activation function. Synchronization schemes are proposed for communicating information between neural network layers, and a simple linear power model is developed to estimate the design’s energy efficiency for a particular network size. Results indicate that the proposed architecture can achieve 1.26 fJ per classification per synapse and achieves high accuracy on image classification even in the presence of large noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Nanotechnology
Frontiers in Nanotechnology Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
96
审稿时长
13 weeks
期刊最新文献
Nanoparticles for microbial control in water: mechanisms, applications, and ecological implications Synthesis of gold nanoparticles coated with glucose oxidase using PVP as passive adsorption linkage Aspects of 6th generation sensing technology: from sensing to sense Editorial: Women in nanotechnology: Vol. I Editorial: Nanofluidics: computational methods and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1